Course detail
Materials and Processes for Production
FSI-YMVAcad. year: 2024/2025
The course aims to acquaint students with structural metallic and non-metallic materials that are currently used in mechanical engineering. Education is focused on the relationship between chemical composition, properties, structure of the material and their use. Accent is given on the connection of theoretical knowledge and practical ability to solve the most common problems associated with materials science occurring in technical practice. An integral part of the course is the acquisition of the principles of materials selection in the sense of Ashby's approach.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Exam: The knowledge of the concepts and nature of the studied topics is evaluated in the frame of the exam . Emphasis is given on verifying the ability to apply the acquired knowledge. In the written part of the exam, the student answers briefly to the test questions. In the oral part of the exam, additional questions are asked on the given topics.
Lectures: participation is recommended
Exercises: participation is mandatory and controlled by the teacher, any absences will be substituted in the form of complemental tasks (the student will solve these tasks separately).
Aims
Graduation of the course should enable students to make a qualified selection of a suitable material for a specific application, including its heat treatment or surface treatment. At the same time, students should be able to identify the most common causes of failures in service in relation to the used materials and the technology of their production, including proposal of the problem solution.
Study aids
Prerequisites and corequisites
Basic literature
JONES, D. R. H., ASHBY, M. F. Engineering Materials 1: An Introduction to Properties, Applications and Design. 4. Elsevier Science, 2011. ISBN 0080966659. (EN)
MICHNA, Š. Encyklopedie hliníku. Prešov: Adin, 2005, 700 s. ISBN 80-89041-88-4.
Recommended reading
ASM INTERNATIONAL. ASM handbook. Volume 9, Metallography and microstructures. Materials Park, Ohio: ASM International, 2004, 1184 s. ISBN 0-87170-706-3. (EN)
DOWLING, Norman E. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 3rd ed. Upper Saddle River: Prentice Hall, 2007, 912 s. ISBN 0-13-186312-6. (EN)
MEISSNER, B., ZILVAR, V. Fyzika polymerů: Struktura a vlastnosti polymerních materiálů. Praha: Státní nakladatelství technické literatury, 1987, 306 s. (CS)
OHRING, M. Engineering Materials Science. San Diego: Academic Press, 1995, 827 s. ISBN 0-12-524995-0. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Introduction, division and marking of steels according to ČSN / ČSN EN
2. Structural non-alloyed steels
3. Stainless and heat-resistant steels
4. Tool steels
5. Steels for castings and graphitic cast irons
6. Non-ferrous metals and their alloys
7. Plastics
8. Ceramics
9. Composites
10. Materials selection
Laboratory exercise
Teacher / Lecturer
Syllabus
Mechanical properties II (plastics, ceramics, composites) - measurement methods, data interpretation, evaluation
Microstructural characteristics of metals and its connection with mechanical properties
Materials selection - Ashby's approach
Principles of cooperation between designer and technologist
Causes of failures in service - case studies (proposals for solutions and preventive measures in relation to the design of structures and production technologies)