Course detail
General Physics II (Electricity and Magnetism)
FSI-TF2Acad. year: 2024/2025
The course gives an explanation for classical electromagnetism. The description of electrostatic field is based on the Coulomb interaction. The description of magnetism, electromagnetic induction and temporally variable fields is based on the description of basic experiments towards the formulation of the Maxwell equations and towards the description of the electromagnetic wave in a vacuum. The field of stationary and quasistationary flux in a conductor is assumed in the electric circuits for the solution of which the Kirchhoff laws are formulated. The properties of conductors, dielectrics and magnetics are described with respect to understanding of effects in the materials and of significance of materials constants. Topics of lectures correspond to the extent of university basic-course textbooks.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Attendance at the exercises is obligatory.
Aims
The course provides students with the competence to apply differential, integral and vector calculus to the calculation of intensity and potential of electric and magnetic fields and of the behaviour of charged particles in these fields. The course develops the competence of abstract thinking, as well as the ability to generalise experimental knowledge during the process of the physical-laws formulation.
Study aids
Prerequisites and corequisites
Basic literature
E. M. Purcell, D. J. Morin: Electricity and Magnetism. 3rd edition, Cambridge University Press 2013 (EN)
HALLIDAY, D. - RESNICK, R. - WALKER, J.: Fyzika. VUTIUM, Brno 2001
SEDLÁK, B., ŠTOLL, I.: Elektřina a magnetismus. Academia Praha, 1993
Recommended reading
D. J. Griffiths: Introduction to Electrodynamics.Addison-Wesley, 2012.
E. M. Purcell, D. J. Morin: Electricity and Magnetism. 3rd edition, Cambridge University Press 2013 (EN)
HALLIDAY, D. - RESNICK, R. - WALKER, J.: Fyzika (2. vydání). VUTIUM, Brno 2013 (CS)
ŠANTAVÝ, I., LIŠKA, M.: Elektromagnetismus. Skriptum VUT v Brně. Elektronická verze: http://physics.fme.vutbr.cz
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Intensity of electrostatic field.
The Gauss’ law.
Potential of electrostatic field.
Capacity and capacitors. Dielectrics.
Electric conductivity and the Ohm’s law. The Kirchhof’s laws and solution of electric circuits.
Impact of the magnetic field on the charged particle and on the conductor with the flux.
The Ampére’s law. The Biot-Savart’s law.
Magnetic field in substances.
Electromagnetic induction. Induction.
Oscillation in RLC circuit.
The Maxwell equations.
Electromagnetic waves.
Electromagnetic waves.
Exercise
Teacher / Lecturer
Syllabus
Elearning