Course detail
Optimization Methods II
FSI-VPP-KAcad. year: 2023/2024
The course deals with the following topics: Dynamic programming and optimal control of stochastic processes. Bellman optimality principle as a tool for optimization of multistage processes with a general nonlinear criterion function. Optimum decision policy. Computational aspects of dynamic programming in discrete time. Hidden Markov models and the Viterbi algorithm. Project management, CMP and PERT methods. Algorithms for shortest paths in graphs and the branch and bound method. Multicriteria control problems. Deterministic optimal control in continuous time, Hamilton-Jacobi-Bellman equation, Pontryagin maximum principle. LQR and Kalman filter. Process scheduling and planning. Problems with infinitely many stages. Applications of the methods in solving practical problems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Entry knowledge
Rules for evaluation and completion of the course
Attendance at seminars is required. An absence can be compensated for via solving additional problems.
Aims
Knowledge: Students will know basic principles and algorithms of methods applicable to the optimization of the deterministic and stochastic, discrete and continuous. They will be made familiar with basic principles and algorithms of methods that are appropriate to creation of decision-support systems for project management, as the tool for the identification, selection and realization of projects. Skills: Students will be able to apply the above methods to the solution of the practical problems from economic decision, problems of increasing the reliability of technological devices, problems of automation control of technological processes and problems of project management, by using contemporary tools of computer science.
Study aids
Prerequisites and corequisites
Basic literature
LOOTSMA, F. A.: Fuzzy Logic for Planning and Decision Making. Kluwer Academic Publishers, Dordrecht, pp. 195, 1997. ISBN 0-7923-4681-5
WILLIAMS, T. M. (Ed.): Managing and Modelling Complex Projects. Kluwer Academic Publishers, London, pp. 257, 1997. ISBN 0-7923-4844-3.
Recommended reading
Klapka J., Piňos P.: Decision Support System for Multicriterial R and D and Information Systems Projects Selection. European Journal of Operational Research 2002, Vol. 140, is. 2, pp. 434 - 446. (EN)
Klapka J., Piňos P., Ševčík V.: Multicriterial Projects Selection (Article). Intelligent Systems Reference Library, Vol. 38 (2013), pp. 245 - 261, ISSN 1868-4394. (EN)
Navrátil P., Pekař L., Klapka J.: Possible way of control of heat output in hotwater piping system of district heating (Article). International Journal of Circuits, Systems and Signal Processing, Vol. 9 (2015), pp. 353 - 361. C. North Atlantic University Union. (EN)
Ševčík V., Klapka J.: Mathematical Method for Multicriterial Project Selection. In: Proceedings of the International Scientific Conference Quantitative Methods in Economics (Multiple Criteria Decision Making XVII). Bratislava: EKONOM, 2014, s. 269 - 275. ISBN 978-80-225-3868-8. (EN)
WALTER, J.; VEJMOLA, S.; FIALA, P.: Aplikace metod síťové analýzy v řízení a plánování. SNTL, Praha, 1989. ISBN 80-03-00101-3
Winston W.L.: Operations Research. Applications and Algorithms. Thomson - Brooks/Cole, Belmont 2004. (EN)
Elearning
Classification of course in study plans
- Programme N-AIŘ-K Master's 2 year of study, winter semester, compulsory
Type of course unit
Guided consultation in combined form of studies
Teacher / Lecturer
Syllabus
2. Minimax (robust) formulation. Reformulations and state augmentation.
3. Deterministic finite-state problems. Forward DP algorithm.
4. Hidden Markov models and the Viterbi algorithm.
5. Basics of network analysis, topological ordering, CPM.
6. Calculation by stochastic evaluation of activities (PERT method).
7. Algorithms for shortest paths in a graph, the branch and bound method.
8. Multicriteria and constrained optimal control problems.
9. Deterministic continuous time optimal control, Hamilton-Jacobi-Bellman equation, Pontryagin maximum principle.
10. LQR a Kalman filter.
11. Problems with an infinite number of stages.
12. Process scheduling.
13. Approximate dynamic programming and Model predictive control.
Guided consultation
Teacher / Lecturer
Syllabus
2. Resource allocation problems.
3. Dynamic programming in stochastic processes, optimizing a repair schedule.
4. State augmentation, optimal inventory control.
5. Viterbi algorithm, decoding of convolutional codes.
6. Examples of project graphs and networks. Implementation of CPM.
7. Numerical applications of the PERT method.
8. Algorithms for shortest paths in a graph, implementation of the A* algorithm.
9. Implementation of the branch and bound method.
10. Multicriteria knapsack problem.
11. LQR, drone control.
12. Job scheduling.
13. Semestral projects.
Elearning