Course detail
Descriptive Geometry
FAST-AA002Acad. year: 2023/2024
Orthogonal axonometry, skew axonometry, oblique projection. Linear perspective, basics of photogrammetry. Helix, developable helicoidal surface, right closed rule helicoidal surface. Surfaces of revolution . Warped surfaces. Lighting. Teoretical designs of roofs. Introduction to topographic surfaces.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Aims
After the course the students should understand and know how to use the basics of orthogonal axonometry, skew projection, and linear perspective.Helix, developable helicoidal surface, right closed rule helicoidal surface. Surfaces of revolution . Warped surfaces. Lighting. Teoretical designs of roofs. Introduction to topopgraphic surfaces.
Study aids
Prerequisites and corequisites
Basic literature
BULANTOVÁ, Jana, MENCÁKOVÁ, Kristýna, MORÁVKOVÁ, Blanka, RÝPAROVÁ, Lenka, ŠAFAŘÍK, Jan, ZRŮSTOVÁ, Lucie: Sbírka řešených příkladů z konstruktivní geometrie, Fakulta stavební VUT v Brně, 2021. https://www.geogebra.org/m/ejhn4jay (CS)
BULANTOVÁ, Jana, PRUDILOVÁ, Květoslava, PUCHÝŘOVÁ, Jana, ROUŠAR, Josef, ROUŠAROVÁ, Veronika, SLABĚŇÁKOVÁ, Jana, ŠAFAŘÍK, Jan, ŠAFÁŘOVÁ, Hana, ZRŮSTOVÁ, Lucie: Sbírka řešených příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, 2006. https://mat.fce.vutbr.cz/studium/geometrie/ (CS)
BULANTOVÁ, Jana, PRUDILOVÁ, Květoslava, ROUŠAR, Josef, ŠAFAŘÍK, Jan, ZRŮSTOVÁ, Lucie: Sbírka zkouškových příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, 2009. https://mat.fce.vutbr.cz/studium/geometrie/ (CS)
ČERNÝ, Jaroslav: Geometry, Vydavatelství ČVUT, Praha 1996. ISBN: 80-01-01535-1 (CS)
ŠAFAŘÍK, Jan: Techniské osvětlení, Fakulta stavební VUT v Brně, 2022. https://mat.fce.vutbr.cz/studium/geometrie/ (CS)
Recommended reading
Classification of course in study plans
- Programme B-P-C-APS (N) Bachelor's
branch APS , 1 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Basics of lihting. Technical lighting.
2. Surfaces of revolution, sections of surfaces of revolution.
3. Lighting of surfaces of revolution .
4. Axonometry – basics.
5. Orthogonal axonometry.
6. Skew axonometry, oblique projection.
7. Linear perspective.
8. Linear perspective.
9. Basics of photogrammetry. Reconstruction from a vertical picture.
10. Warped quadrics. Hyperbolic paraboloid. One-sheet hyperboloid.
11. Higher order warped surfaces. Theoretical designe of roofs.
12. Helix, developable helicoidal surface, helicoidal conoid.
13. Topographic surfaces.
Exercise
Teacher / Lecturer
Syllabus
1. Revision – Monge projection.
2. Projections of a simple bodies and surfaces, their sections and intersections with a straight line. Technical lighting.
3. Tangent plane of a surface of revolution, section of a surface of revolution.
4. Lighting of a surface of revolution.
5. Orthogonal axonometry. Metric problems in coordinate planes.
6. Orthogonal axonometry. Projections of simple bodies and surfaces, their sections and intersections with a straight line.
7. Projecting in oblique projection. Projection of a circle in a coordinate plane. Displaying simple bodies. Cutting method.
8. Linear perspective. Intersection method. Constructing a free perspective.
9. Linear perspective. Method of rotated ground plan. Other methods of projecting a perspective.
10. Linear perspective. Vertical picture. Reconstructing an object from a perpendicular picture.
11. Warped hyperboloid, construction. Hyperbolic paraboloid. Hyperbolic paraboloid given by skew tetragon. Roofing by hyperbolic paraboloid.
12. Higher-order warped surfaces. Theoretic design of roofs.
13. Constructing a helix. Right helicoidal conoid. Credits.