Course detail
Descriptive geometry
FAST-BAA007Acad. year: 2023/2024
Focal properties of conics. Perspective affinity, affine image of a circle, perspective colineation, colinear image of a circle. Coted projection, application on a topographic surface. Projecting on two perpendicular planes. Basics of orthogonal axonometry, central projection. Linear perspective (perspective of an object using relative and free methods). Stereography projection.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Entry knowledge
Rules for evaluation and completion of the course
Students have to pass two credit tests, submit two/three drawings and other homework.
Followed by an exam with a pass rate of at least 50%.
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Aims
Know how to construct conics from the properties of their foci. Understand and apply the principles of perspective colineation and perspective affinity. Understand the basics of coted projection, Monge`s projection and orthogonal axonometry, central projection and perspective projection. Display basic geometric bodies in each projection. Construct sections of bodies by a plane. Constructions in a plane in central projection and the projection of a simple body. Project a building using a perspective projection. Topographic surfaces. Stereography projection.
Students should be able to construct conics from the properties of their foci, perspective colineation, perspective affinity. Understand the basics of projections: coted projection, Monge`s projection, orthogonal axonometry, central projection and perspective projection. Display the basic geometric bodies in each projection. Construct sections of bodies. Project a building using a perspective projection. Topographic surfaces. Stereography projection.
Study aids
Prerequisites and corequisites
Basic literature
BULANTOVÁ, Jana, MENCÁKOVÁ, Kristýna, MORÁVKOVÁ, Blanka, RÝPAROVÁ, Lenka, ŠAFAŘÍK, Jan, ZRŮSTOVÁ, Lucie: Sbírka řešených příkladů z konstruktivní geometrie, Fakulta stavební VUT v Brně, 2021. https://www.geogebra.org/m/ejhn4jay (CS)
BULANTOVÁ, Jana, PRUDILOVÁ, Květoslava, PUCHÝŘOVÁ, Jana, ROUŠAR, Josef, ROUŠAROVÁ, Veronika, SLABĚŇÁKOVÁ, Jana, ŠAFAŘÍK, Jan, ŠAFÁŘOVÁ, Hana, ZRŮSTOVÁ, Lucie: Sbírka řešených příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, 2006. https://mat.fce.vutbr.cz/studium/geometrie/ (CS)
BULANTOVÁ, Jana, PRUDILOVÁ, Květoslava, ROUŠAR, Josef, ŠAFAŘÍK, Jan, ZRŮSTOVÁ, Lucie: Sbírka zkouškových příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, 2009. https://mat.fce.vutbr.cz/studium/geometrie/ (CS)
ČERNÝ, Jaroslav: Geometry, Vydavatelství ČVUT, Praha 1996. ISBN: 80-01-01535-1 (EN)
KRÁLOVÁ, Alice: Konstruktivní geometrie, Topografické plochy, Mendelova univerzita. http://user.mendelu.cz/balcarko/Top_Plochy.pdf (CS)
ŠAFAŘÍK, Jan: Cvičení z deskriptivní geometrie pro obor Geodézie a kartografie, Fakulta stavební VUT v Brně, 2022. https://mat.fce.vutbr.cz/studium/geometrie/ (CS)
TALANDA, Pavel: Deskriptivní geometrie, Vybrané kapitoly z kartografie pro obor geodezie, Fakulta stavební VUT, Brno 2014. (CS)
Recommended reading
HAVRANOVÁ, Zuzana: Deskriptívna geometria I, Pracovné listy I, Slovenská technická univerzita v Bratislave v Nakladateľstvu STU, Bratislava, 2015. ISBN: 978-80-227-4496-6 (SK)
KOČANDRLOVÁ, Milada, ČERNÝ, Jaroslav: Konstruktivní geometrie, Česká technika - Nakladatelství ČVUT, Praha 2021. ISBN: 978-80-01-06049-0 (CS)
TALANDA, Pavel: Deskriptivní geometrie pro obor geodezie a kartografie, 3. vydání, Akademické nakladatelství CERM, Brno 1999. ISBN: 80-214-0447-7 (CS)
Classification of course in study plans
- Programme BPC-GK Bachelor's 1 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
1. Extended Euclidean space. Perspective affinity, collineation. Curve affine to a circle.
2. Curve in collineation to a circle. Geodetic curve, developable surfaces. Coted projection.
3. Coted projection.
4. Coted projection. Topographic surfaces.
5. Monge`s projection.
6. Monge`s projection. Sphere. Orthogonal axonometry.
7. Orthogonal axonometry.
8. Central projection.
9. Central projection. Linear perspective projection.
10. Linear perspective projection.
11. Reconstruction of the elements of internal orientation.
12. Stereography projection.
13. Stereography projection.
Exercise
Teacher / Lecturer
Syllabus
1. Focal properties of conics.
2. Perspective collineation, perspective affinity. Constructing an ellipse based on affinity.
3. Collinear image of a n-gonal and a circle.
4. Coted projection.
5. Coted projection. Aplications.
6. Monge´s projection.
7. Monge´s projection. Sphere. Test.
8. Orthogonal axonometry.
9. Central projection.
10. Linear perspective.
11. Test. Linear perspective.
12. Linear perspective.
13. Stereography projection. Seminar evaluation.