Course detail

Integrated Optoelectronics

FEKT-MPC-IOPAcad. year: 2023/2024

Novel opto-electronics components for communications - DFB and VCSEL laser diodes, fast detectors. Building blocks of integrated and fibre optics, splitters, wave division mux and demuxes, fibre isolators, polarization rotators, circulators, filters, add-drop multiplexers. Optical wavelength division multiplexing, WWDM, CWDM, DWDM. Optimizing of the multimode fibre capacity utilization.
Dispersion compensation the singlemode communication links. Fibre amplification with use of erbium and praseodyn doped fibres. Nonlinear effects in fibresand their utilization - generation and transfer of solitons, stimulated Raman scattering and its applications in fibre amplifiers, stimulated Brillouen scattering, four wave mixing and implication to the wave division multiplex. Modulation an coding for the optical communication.
Optical communication systems for LAN,MAN. Optical communication systems for industrial control, surveillance, CCTv and CaTv systems. Optical communication in telecommunication systems. Coherent optical signal processing.
Polarization maintaining fibres, optical fibre sensors.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

The subject knowledge on the Bachelor´s degree level is requested.

Rules for evaluation and completion of the course

70 pts - exam
30 pts - labs and seminars
Laboratory workshop

Aims

To show the technical solutions of the optical fibre and free space communication systems, namely with respect to the physical communication layer of the OSI model. The focus is aimed to the telecommunication trunk systems, LAN, MAN, cable Tv systems and the industrial control and surveillance systems. To give the technical and application knowledge on the novel communication components and systems based on the nonlinear optics, wave multiplex, coherent optics, optical amplification, filtering, and dispersion compensation in optical fibres. To give the grounds of the optical fibre application in sensing and measurement.
Attendant is able to orient himself in the design of optical communication systems, knows to compose the optical communication chain from the suitable components and fitted to the application. The attendant is able to select optimal solution, components and blocks for building up the the communication structure of LANs, MANs, CCTV and CaTV nerworks and telecommunication trunks.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Y. Chai, Applied Photonics, Academic Press, California, 1994.
Saleh B. E. A., Teich M. C.: Fundamentals of photonics, New York, Wiley, 1991.
Čtyroký J., Hüttel I., Schröfel J., Šimánková L.: Integrovaná optika, Praha, SNTL 1986.
Schroffel, J. - Novotný, K. Optické vlnovody. Praha, SNTL-ALFA 1986.

Recommended reading

Not applicable.

eLearning

Classification of course in study plans

  • Programme MPC-MEL Master's, 2. year of study, winter semester, compulsory-optional

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer

eLearning