Course detail

Optical Communication

FEKT-BPC-OKOAcad. year: 2023/2024

Students will be acquainted with laser beam properties, Gaussian beam, time and spatial coherence, diffraction theory, Jones´ description of the polarization, properties of basic optical components, laser, laser diodes and LED, laser beam shaping, principle of photodetection and photodetectors, noises in optical communication, modulation in optical communication, types and properties of optical fibers, optical link budget and optical fiber link design, atmospheric transmission media in optical spectrum and optical wireless link design, hybrid and fully photonic links and VLC.

Language of instruction

Czech

Number of ECTS credits

5

Mode of study

Not applicable.

Entry knowledge

The subject knowledge on the secondary school level is required.

Rules for evaluation and completion of the course

Evaluation: 1 tests (up to 10), 10 laboratory exercises (up to 20 points). The test has a compulsory written part (up to 50 points) and a compulsory oral part (up 20 points). The content of the exam corresponds to the subject annotation.
Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Aims

The aim of the course is to acquaint students with basic aspects of optical communications, optical components, optical diffraction and polarization properties of laser beam and laser beam properties. The next goal is to explain the function of optical transmitter and receiver and the principle of the laser function and to analyze optical fiber links, optical wireless links including hybrid and fully photonic links and VLC.
The graduate is able:
- To describe the wave and electromagnetic manifestations of light
- To describe and explain polarization, diffraction and coherence
- To explain the principle of laser function
- To design optical fiber and wireless links
- To compare individual optoelectronic and optical components and discuss their advantages and disadvantages

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

WILFERT,O. Optoelektronika. Elektronický učební text. UREL VUT v Brně, Brno 2002, REL 023 (CS)
MAJUMDAR, A. K., RICKLIN J.C. Free-Space Laser Communications, Springer Science+Business Media, New York 2008 (CS)
WILFERT,O. Optoelektronika. Skripta. UREL VUT v Brně, Brno 2002, ISBN 80-214-2264-5 (CS)
WILFERT,O. Optoelektronika. Skripta. UREL VUT v Brně, Brno 2002, ISBN 80-214-2264-5 (CS)
SALEH, B. E. A., TEICH, M. C. Základy fotoniky 1-4. Matfyzpress, Praha 1994 (CS)

Recommended reading

Not applicable.

eLearning

Classification of course in study plans

  • Programme BPC-AUD Bachelor's

    specialization AUDB-ZVUK , any year of study, summer semester, elective
    specialization AUDB-TECH , any year of study, summer semester, elective

  • Programme BPC-AMT Bachelor's, any year of study, summer semester, elective
  • Programme BPC-IBE Bachelor's, any year of study, summer semester, elective
  • Programme BPC-MET Bachelor's, any year of study, summer semester, elective
  • Programme BPC-SEE Bachelor's, any year of study, summer semester, elective
  • Programme BPC-TLI Bachelor's, any year of study, summer semester, elective
  • Programme BPC-EKT Bachelor's, 3. year of study, summer semester, compulsory-optional

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

Basic aspects of optical communication
Laser beam properties
Optical diffraction and polarization
Optical components
Optical transmitters
Optical receivers
Theory of optical communication
Optical fibers
Design of optical fiber link
Atmospheric transmission media
Design of optical wireless link
Hybrid, fully photonic links and VLC
Optical communication network

Fundamentals seminar

13 hours, compulsory

Teacher / Lecturer

Syllabus

Properties of optical radiation
Energy parameters of the optical beam
Polarization of optical beams
Attenuations in transmission media
Design of optical transmitter
Calculation of optical system parameters
Design of optical receiver
Parameters of communication systems
Signal transmission in optical fiber
Fiber optic link design
Properties of the atmospheric transmission medium
Design of an optical wireless link 

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer

Syllabus

Measurement of optical fibers parameter
Transmission of information by optical fiber
Measurement of surface reflectivity
Measurement of response and linearity of optical receiver
Measurement of laser beam polarisation
Measurement of laser diode and LED properties
Laser beam shaping
Design of optical wireless link
Design of optical fiber link
Laser beam safety

eLearning