Course detail

# Electrical Engineering

Introduction to safety regulations necessary for laboratory part of the course. Basic laws and quantities in electrical circuits, characteristics of the basic circuit elements. Electrical power in electrical circuits. Methods of analysis of linear circuits in stationary steady state. Fundamentals of nonlinear elements and circuits. Magnetic circuits. Characteristics of time-varying signals. Harmonic steady state in linear circuits. Methods of analysis of circuits in harmonic steady state. Properties and applications of basic passive linear first- and second-order circuits . Classical and operator method of solution of transient phenomena in linear circuits. Unit-step and impulse response of the circuit.

Language of instruction

Czech

Number of ECTS credits

7

Mode of study

Not applicable.

Entry knowledge

In the range of the used mathematics student should be able to:
- express the result of partial fractions decomposition and the result of division of polynomials;
- explain the procedure of mathematical function examination in order to find extremes;
- calculate the solution of simple linear equations;
- apply the basics of matrix calculus;
- describe the characteristics of basic trigonometric functions;
- describe the importance of using limits of functions;
- describe the basic features of complex numbers;
- calculate the derivative, definite and indefinite integrals of simple linear functions of one variable and basic trigonometric functions.

Another additional expert knowledge is not required.

Rules for evaluation and completion of the course

Maximum achievable points count for the course is 100. Within the total count - 25 points can be obtained by tests in numerical computer lessons, 5 points can be obtained by test in laboratory lessons and 70 points in the final exam. The requirement for credit obtaining is the completed measurement of laboratory exercises and processing of measurement protocols and obtaining at least 15 points in tests. Subject to the successful completion of the course is to obtain credit and passing the final exam. The total number of points achieved for completion of the course must be at least 50.
Specification of controlled course teaching and way of implementation will be specified by annually updated supervisor's public notice.

Aims

Providing basic knowledge in electrical engineering and theory of electrical circuits, which are required as prerequisites of consecutive courses in the field of study. In the numerical computer lessons to deepen and consolidate the theoretical knowledge. In practical laboratory lesson to verify theoretical knowledge.
After completion of the course (lectures and computer exercises) student will be able to:
- mathematically express relations between circuit quantities for basic passive and active circuit elements and to define their models;
- apply the basic analysis methods of linear circuits in stationary steady state for the given examples;
- analyze the properties of circuits with nonlinear elements and to demonstrate the approximation of the of non-linear element characteristics;
- list the fundamental variables and the laws of magnetic circuits and to calculate the parameters of magnetic circuit by their utilization;
- calculate the characteristic parameters of time-varying signals and to describe the principle of harmonic analysis of signals;
- define phasor quantities in circuits in harmonic steady state and to define immittance parameters of basic circuit elements;
- apply symbolic method for analysis of linear circuits in harmonic steady state;
- describe the properties and behavior of the basic passive linear first-order and second-order circuits and to calculate their characteristic parameters;
- choose the procedure for the solution of transient phenomena in linear circuits, to apply Laplace transform method to the solution of transient phenomena, to interpret the results of the solution.
- calculate the unit-step and impulse characteristics of passive linear two-port network;

As part of the course, there will be held the examination under § 5 of the Decree 50/1978 Coll. After successful completion of the examination, student will be able to:
- describe the classification of electrical devices and distribution networks, enumerate wires and terminals marking, define the meaning of the symbols on electrical devices;
- explain and define the safety and health protection regulations at work, enumerate and define ways of protection against electric shock ;
- describe the principles of fire safety within the operation of electrical devices.

In the laboratory part of the course, students will learn to:
- measure the fundamental circuit variables of simple and combined two-terminal elements and networks and to express their immittance;
- measure electrical quantities in the circuit in harmonic steady state and to compare them with the calculated values;
- measure electrical quantities in the circuit in harmonic steady state and to interpret them using phasor diagrams;
- measure the electrical power supplied to the load and to experiment with the influence of the load impedance value on the level of power matching;
- measure and graphically interpret the frequency responses of a basic passive integration and derivation circuit and serial and parallel resonant circuit;
- measure the transient waveforms in passive linear circuits and to experiment with the effect of the components values on the transient's characteristic;
- measure the spectra of harmonic and non-harmonic signals and to compare them with calculated spectra; demonstrate the influence of nonlinear circuit on transmitted signal spectrum;
- analyze the properties of basic electrical circuits using computer simulation.

Study aids

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Sedláček, J.; Steinbauer, M.; Drexler, P. Elektrotechnika pro audioinženýrství, laboratorní cvičení - pracovní sešit. FEKT VUT v Brně, 2014. (CS)
Elektrotechnika pro audioinženýrství - soubor prezentací z přednášek předmětu JELE (CS)
Elektrotechnika pro audioinženýrství - soubor prezentací z počítačových cvičení předmětu JELE (CS)
Sedláček, J.; Steinbauer, M.; Drexler, P. Elektrotechnika pro audioinženýrství, laboratorní cvičení. FEKT VUT v Brně, 2014. (CS)

Brančík, L. Elektrotechnika 1 - přednášky. FEKT VUT v Brně, 2003. (CS)
Sedláček, J.; Valsa, J. Elektrotechnika 2. FEKT VUT v Brně. (CS)
Sedláček, J.; Steinbauer, M.; Elektrotechnika 1 - počítačová cvičení. FEKT VUT v Brně, 2013. (CS)
Murina, M.; Sedláček, J.; Steinbauer, M. Elektrotechnika 2 - sbírka příkladů FEKT VUT v Brně, 2009. (CS)

Elearning

Classification of course in study plans

• Programme BPC-AUD Bachelor's

specialization AUDB-ZVUK , 1 year of study, summer semester, compulsory

#### Type of course unit

Lecture

39 hod., optionally

Teacher / Lecturer

Syllabus

1. Elektrotechnika – historie, základní pojmy, fyzikální souvislosti a zákony elektrotechniky, základní obvodové prvky
2. Aktivní obvodové prvky a jejich modely, výkon v elektrických obvodech, výkonové přizpůsobení, metoda postupného zjednodušování
3. Od Kirchoffových rovnic k metodě smyčkových proudů
4. Metoda uzlových napětí, dvojbrany, řízené zdroje, elementární modely tranzistorů, využití razítek prvků v metodě uzlových napětí
5. Nelineární prvky a obvody, aproximace charakteristik, řešení nelineárních obvodů
6. Obvody s permanentními magnety a elektromagnety, základní veličiny a zákony, základy řešení magnetických obvodů, transformátory
7. Časově proměnné veličiny a jejich parametry, harmonická analýza, zkreslení signálu v nelineárních obvodech
8. Harmonické veličiny v elektrických obvodech, harmonický ustálený stav (HUS), fázory, imitance, výkon v HUS, symbolická metoda analýzy lineárních obvodů v HUS, metoda postupného zjednodušování
9. Metoda smyčkových proudů a metoda uzlových napětí v obvodech v harmonickém ustáleném stavu
10. Vlastnosti základních pasivních lineárních obvodů 1. řádu (RC, RL) a 2. řádu (rezonanční obvody RLC)
11. Přechodné děje v lineárních obvodech, klasická metoda řešení, operátorová metoda řešení
12. Řešení přechodných dějů s nenulovými počátečními podmínkami, přechodná a impulsová odezva lineárního obvodu

Exercise in computer lab

19 hod., optionally

Teacher / Lecturer

Syllabus

1. Úvod do elektrotechniky – elektrická energie – výroba a význam
2. Opakovaní – matematika v elektrotechnice
3. Základní zákony elektrotechniky, výkon v el. obvodech, metoda postupného zjednodušování
4. Metoda smyčkových proudů (MSP)
5. Metoda uzlových napětí, řízené zdroje a metoda uzlových napětí, použití razítek prvků
6. Analýza nelineárních obvodů
7. Magnetické obvody
8. Časově proměnné veličiny, harmonická analýza signálu, zkreslení
9. Úvod do komplexního počtu, použití komplexního počtu v obvodech v HUS, imitance prvků
10. Impedance jako dvojpól, výkon v HUS, metoda post. zjednodušování, (ukázka MSP v HUS)
11. Vlastnosti pasivních lineárních obvodů 1.řádu
12. Vlastnosti pasivních lineárních obvodů 2. řádu, Řešení přechodných dějů operátorovou metodou (nul. poč. podmínky)
13. Řešení přechodných dějů operátorovou metodou (nenul. poč. podmínky), Přechodná a impulsová odezva lineárního obvodu

Laboratory exercise

20 hod., compulsory

Teacher / Lecturer

Syllabus

2. Metoda uzlových napětí (MUN)
3. Magnetické pole ve vzduchové mezeře
4. Vlastnosti lineárních a nelineárních obvodových prvků
5. Impedance dvojpólu
6. Výkon v jednofázovém obvodu
7. Základní vlastnosti článků RC a CR
8. Sériový rezonanční obvod
9. Přechodné děje v lineárních obvodech
10. Analýza neharmonických signálů

E-learning texts

Sedláček, J.; Steinbauer, M.; Drexler, P. Elektrotechnika, laboratorní cvičení - pracovní sešit. FEKT VUT v Brně, 2020.
BPC-ELEA_pracovní sešit.pdf 0.83 MB
Sedláček, J., Valsa, J.: Elektrotechnika 2 - přednášky
Elektrotechnika_2_S.pdf 4.05 MB

Elearning