Course detail
Machine Dynamics
FSI-UDS-AAcad. year: 2023/2024
The course is focused on the dynamics of mechanical systems and machines. The lectures deal with several basic areas, such as oscillation of one and multi-degrees of freedom mechanical systems, on oscillation of flexible body, nonlinear systems and multi-body systems of machines. The mentioned tasks will be explained in seminars, and numerical methods will be used to solve the dynamic problems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Offered to foreign students
Entry knowledge
Rules for evaluation and completion of the course
Final examination: The exam is divided into two parts. The evaluation of the exam is based on the classifications of each part. If one of the parts is graded F, the final grade of the exam is F. The content of the first part is a test, of which a maximum of 30 points can be obtained. The content of the second part is a solution of typical problems. It is possible to gain up to 30 points from this part. The form of the exam, types, number of examples or questions and details of the evaluation will be given by the lecturer during the semester.
The final evaluation is given by the sum of the points gained from the exercises and exam. To successfully complete the course, it is necessary to obtain at least 50 points, where the maximum of 100 ECTS points can be reached.
Attendance at practical training is obligatory. Head of seminars carry out continuous monitoring of student's presence, their activities and basic knowledge. One absence can be compensated for by elaboration of substitute tasks.
Aims
The students will have detailed knowledge of vibration of systems with single and several degrees of freedom. They will be able to calculate eigenfrequencies and responses of these systems with different types of excitation. They will be able to solve practical problems that can be modeled in this way. The student will have knowledge of the vibration of basic continuum bodies. They will be able to create models using finite element method and multi-body systems. The students will be able to apply the basic methods of linearization in the solution of nonlinear systems vibration.
Study aids
Prerequisites and corequisites
Basic literature
Meirovitch,L.: Elements of Vibration Analysis, 2002 (EN)
William T. Thomson, Theory of Vibration With Applications 5th Edition (EN)
Recommended reading
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Free oscillation of one degree of freedom oscillator, eigenvalue problem
3. Excitation of one degree of freedom oscillator
4. Oscillation of multi-degrees of freedom dynamic system
5. Computational methods of solving eigenvalues problem and methods of motion equation integration
6. Vibrations of nonlinear system
7. Method for reducing size of dynamic model
8. Longitude and torsional oscillation of beam
9. Transversal oscillation of beam
10. Oscillation of rectangular and circular plates and membranes
11. Multi-body systems
12. Models of dynamic systems
13. Examples of practical problems
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Free oscillation of one degree of freedom system
3. Excitation of one degree of freedom system
4. Solving of motion equations of the multi degrees of freedom systems
5. Methods of solving eigenvalues problem and methods of motion equation integration
6. Nonlinear systems
7. Methods for reducing the size of dynamic model
8. Oscillation of beam (longitude and torsional)
9. Oscillation of beam (transversal)
10. Oscillation of rectangular and circular plates and membranes
11. Multi-body system
12. Multi-body system
13. Multi-body system and flexible bodies
Elearning