Course detail

Microwave Techniques

FEKT-BPA-MVTAcad. year: 2022/2023

The subject introduces circuit techniques in the frequency range up to tens of GHz. The lectures are concentrated on the presentation of basic principles and properties of microwave structures whose knowledge is necessary for the design of devices not only for communication purposes. Laboratory exercises practically familiarize students with individual microwave circuits and measurement methods. 

Language of instruction

English

Number of ECTS credits

5

Mode of study

Not applicable.

Learning outcomes of the course unit

The graduate is able to:
- describe, analyze and design a coax line, and metal rectangular and circular waveguides;
- explain „hybrid microwave integrated circuit“;
- describe basic types of passive microwave integrated structures ( microstrip, coplanar, slot one) and compare them;
- explain „monolithic microwave integrated circuit“;
- describe basic types of microwave resonators (transmission lines resonators, cavity resonators, planar resonators, dielectric resonators);
- explain coupling of cavity resonators to surrounding circuits;
- explain basic principles of a waveguide and cavity resonator excitation;
- analyze and design transmission lines and cavity resonators;
- explain „power divider“ and a principle of Wilkinson power divider;
- explain „directional coupler“, define its basic parameters and explain „quadrature hybrid“;
- explain principles on which waveguide microwave attenuators, phase shifters, and reactance components are based;
- explain „ferrite isolator“ and „ferrite circulator“, explain principles on which they are based and specify areas of their application;
- explain „substrate integrated waveguide“, specify its basic properties and compare it with a rectangular waveguide. 

Prerequisites

Students who enroll the course should be able to:
- compute with complex numbers;
- explain fundamental principles of theory of electromagnetic waves and transmission lines(Maxwell’s equations, propagation of a wave along transmission line, transmission line parameters);
- work with Smith chart.

The work in the laboratory is conditioned by a valid qualification of a "instructed worker" according to 50/1978 Coll., which students must obtain before the start of classes. Information on this qualification is given in the Dean's Directive Familiarization of students with safety regulations. 

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Techning methods include lectures and practical laboratories. Course is taking advantage of e-learning (Moodle) system. 

Assesment methods and criteria linked to learning outcomes

A test written during semester (15 points), laboratory exercises (20 points), final exam (23 points written part + 42 points oral part=totally 65 points). 

Course curriculum

1. Introduction to microwave techniques, fundamental transmission structures
2. Rectangular waveguides
3. Circular waveguides, coaxial lines and waveguides
4. Microwave integrated techniques
5. Basic kinds of microwave integrated circuits
6. Transmission line resonators, cavity resonators, resonator excitation
7. Planar and dielectric resonators
8. Microwave network analysis
9. Impedance transformers
10. Power dividers, directional couplers
11. Microwave attenuators and phase shifters, matched loads, filters
12. Nonreciprocity microwave ferrite circuits
13. Circuits based on substrate integrated waveguide technology 

Work placements

Not applicable.

Aims

The subject is aimed to present basic principles of microwave techniques in the frequency range up to tens of GHz, and on practicing practical approaches to computing parameters of basic transmission structures and microwave circuits. 

Specification of controlled education, way of implementation and compensation for absences

Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually. 

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Basic literature

POZAR, D. Microwave engineering, John Wiley and Sons, New Jersey, 2005. (EN)
KHAN, A., S., Microwave Engineering Concepts and Fundamentals, CRC Press, Boca Raton, 2014. (EN)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme BPA-ELE Bachelor's

    specialization BPA-ECT , any year of study, summer semester, elective

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Laboratory exercise

13 hours, compulsory

Teacher / Lecturer