Course detail
Practicum in Mathematics 2 PM
FP-BpmlPAcad. year: 2022/2023
Obsah tohoto praktika odpovídá předmětu Matematika 2 a dává studentům možnost se podrobněji seznámit s praktickým řešením konkretních úloh, procvičit si obtížnější partie a překonat obtíže pří zvládání učiva.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Požadavky pro udělení zápočtu:
Absolvování kontrolních testů a dosažení alespoň 50 % bodů.
Course curriculum
1. Diferenciál a derivace vyšších řádů (diferenciál a jeho použití, derivace vyšších řádů, l ́Hospitalovo pravidlo)
2. Průběh funkce I (monotonie, lokální a absolutní extrémy funkce)
3. Průběh funkce II (konvexnost a konkávnost, asymptoty funkce, úplný popis chování funkce)
4. Neurčitý integrál (smysl, vlastnosti, základní pravidla pro výpočet)
5. Metody integrace I (metoda per partes a substituční)
6. Metody integrace II (rozklad na parciální zlomky, integrace racionálních lomených funkcí)
7. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet)
8. Aplikace určitého integrálu
9. Funkce více proměnných a parciální derivace (graf a jeho řezy, parciální derivace, diferenciál)
10. Extrémy funkcí více proměnných (parciální derivace vyšších řádů, extrémy lokální a na kompaktních množinách)
11. Vázané extrémy funkcí více proměnných
12. Diferenciální rovnice 1.řádu se separovanými proměnnými
13. Lineární diferenciální rovnice 1.řádu
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Účast na praktiku je kontrolována.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MEZNÍK, I. Diskrétní matematika pro užitou informatiku, Brno 2013, CERM s.r.o., 185 s, ISBN: 978-80-214-4761- 5
MEZNÍK, I.: Matematika I, , 9. vydání, Brno 2011, FP VUT v Brně, 150s, ISBN 978-80-214-3725-8
MEZNÍK, I.: Matematika II., 11.vydání, Brno 2009, CERM s.r.o., 105s, ISBN 978-80-214-3816-3
Recommended reading
JACQUES, I.: Mathematics for economics and business. Second edition. Addison-Wesley, Wokingham 1994. 485s. ISBN 0-201-42769-9
MEZNÍK, I.- KARÁSEK, J.- MIKLÍČEK, J.: Matematika I pro strojní fakulty, 1. vydání, SNTL, Praha 1992, 502s, ISBN 80–03–00313-X
Classification of course in study plans
- Programme BAK-PM Bachelor's 1 year of study, summer semester, elective
Type of course unit
Exercise
Teacher / Lecturer
Syllabus
- Diferenciál a derivace vyšších řádů (diferenciál a jeho použití, derivace vyšších řádů, l´Hospitalovo pravidlo)
- Průběh funkce I (monotonie, lokální a absolutní extrémy funkce, konvexnost a konkávnost, asymptoty funkce)
- Průběh funkce II (úplný popis chování funkce)
- Neurčitý integrál (smysl, vlastnosti, základní pravidla pro výpočet)
- Metody integrace I (metoda per partes a substituční)
- Metody integrace II (rozklad na parciální zlomky, integrace racionálních lomených funkcí)
- Určitý integrál (smysl, vlastnosti, pravidla pro výpočet)
- Aplikace určitého integrálu
- Funkce více proměnných a parciální derivace (graf a jeho řezy, parciální derivace, diferenciál)
- Extrémy funkcí více proměnných (parciální derivace vyšších řádů, extrémy lokální a na kompaktních množinách)
- Vázané extrémy funkcí více proměnných
- Diferenciální rovnice 1. řádu se separovanými proměnnými
- Lineární diferenciální rovnice 1. řádu