Course detail

# Modern Numerical Methods

FEKT-MPC-MNMAcad. year: 2022/2023

The course deals with some numerical methods that are used to find the numerical solution of the problem that we can not or are not able to solve analytically. All methods are correctly implemented and in most cases proved. Therefore, the first we focus on the theory of errors introduced in terms of metrics and standards and their relationships. Furthermore, we discuss proceeds with Banach fixed point theorem, which is the basis of a number of numerical methods. Explanation of its action is carried out on systems of linear algebraic equations. The interpretation starts from the finite methods and iterative solution methods. Similarly, we discuss the solution of nonlinear equations, algebraic equations and their systems. We also deal with eigenvalues of the matrix and with the search for solutions to the initial and boundary value problems for ordinary differential equations and their systems and also for partial differential equations. For each numerical methods are included that guarantee convergence of the method.

Guarantor

Department

Learning outcomes of the course unit

• Work with various matrix and vector norms and make their estimates.

• Solve systems of linear algebraic equations. Decide whether it is possible to solve the system using a given method.

• Find roots of nonlinear and algebraic equations with required accuracy.

• Solve systems of equations.

• Determine the dominant eigenvalue of a matrix.

• Find all eigenvalues. To the suitability of the specified procedure for finding eigenvalues.

• Find the numerical solution of initial value problems for ordinary differential equations and their systems with required accuracy.

• Find the numerical solution of partial differential equations. Work with boundary and internal points system.

• Explain the nature of the finite element method and know how to use it to solve problems on a computer.

• Select the appropriate method for a given type of task and estimate the rate of convergence of certain methods.

• Determine accuracy estimates for certain methods.

Prerequisites

Co-requisites

Recommended optional programme components

Literature

BAŠTINEC, J.; NOVÁK, M. Moderní numerické metody: sbírka příkladů. Brno: FEKT, VUT v Brně, 2011. (CS)

JIN, J., The finite element method in electromagnetics. JOHN-WILEY & SONS, INC. New York 1993. (EN)

VITÁSEK, E., Numerické metody. SNTL Praha 1987. (CS)

STEVEN, C., CHAPRA, RAYMOND, P., Numerical Methods for Engineers, Fifth edition, McGraw-Hill 2006,ISBN 007-124429-8 (EN)

PŘIKRYL, P., Numerické metody matematické analýzy. SNTL Praha 1985. (CS)

Planned learning activities and teaching methods

Assesment methods and criteria linked to learning outcomes

Up to 40 points for computer exercises for a written test (10 points) and 30 points for individual homework (max. 15 points for the program and the maximum 15 points for presentation and protocol).

Up to 60 points for the written final exam. The test contains both theoretical and numerical tasks that are used to verify the orientation in the problems of numerical methods and their application. This includes tasks such as "adjust to the shape of convergence", without interpolating the end.

Language of instruction

Work placements

Course curriculum

2. Solving systems of linear equations: an overview of finite and iterative solution methods.

3. Review of methods for solving nonlinear equations.

4. Algebraic equations and their properties, estimates of the root position, the method of determining roots of algebraic equations.

5. Solving systems of nonlinear equations. Newton and iterative methods for systems of equations.

6. Eigenvalues. Identification of the dominant eigenvalue.

7. The solution of ordinary differential equations of the first order. Basic concepts, the initial problem, one-step and multi-step methods of solution, Taylor series method.

8. Ordinary differential equations of higher order. Systems of ordinary differential equations of first order and their solutions.

9. Boundary value problems for ordinary differential equation and its solution by finite differences and finite volumes.

10. Finite element methods for ordinary differential equations.

11. Partial Differential Equations. Basic concepts, solutions of partial differential equations of the first order.

12. Classification of partial differential equations of second order. The solution of partial differential equations of second order using method of finite differences.

13. The solution of partial differential equations of second order using the finite elements method.

Aims

Specification of controlled education, way of implementation and compensation for absences

Specifications of the controlled activities and ways of implementation are provided in annual public notice.

Date of the written test is announced in agreement with the students at least one week in advance. The new term for properly excused students is usually during the credit week.

Classification of course in study plans

- Programme MPC-AUD Master's
specialization AUDM-TECH , 1. year of study, summer semester, 5 credits, compulsory-optional

specialization AUDM-ZVUK , 1. year of study, summer semester, 5 credits, compulsory-optional - Programme MPC-BIO Master's, 1. year of study, summer semester, 5 credits, compulsory-optional
- Programme MPC-BTB Master's, 1. year of study, summer semester, 5 credits, compulsory-optional
- Programme MPC-TIT Master's, 1. year of study, summer semester, 5 credits, compulsory-optional
- Programme MPC-EKT Master's, 1. year of study, summer semester, 5 credits, compulsory-optional
- Programme MPC-MEL Master's, 1. year of study, summer semester, 5 credits, compulsory-optional
- Programme MPC-SVE Master's, 1. year of study, summer semester, 5 credits, compulsory-optional