Course detail
Electrotechnical Materials and Production Processes II
FEKT-BKC-EMV2Acad. year: 2022/2023
Surface treatment, protective layers, corrosion immunity, thin layers, thin layer usage, assembly technology, connecting technology, special industrial processes, electron, ion, RTG, nuclear, lasers, ultrasonic and electro-erosive processes.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- can describe basic industrial processes in the area of electrotechnical technology
- can explain basic working principles of the systems exploiting electron beams, ionic beams, X-rays, nuclear transmutation, lasers, ultrasonic and electro erosion, their advantages and limitations from the point of view of industrial processes
- is able to explain basic working principles of sources of electron beams, ionic beams, lasers and ultrasonic converters
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Thin layers: basic types, theoretical analysis of production of thin layers, selection of substrates, special technology. Usage of thin layers.
3. Assembly technology: basic systems assemblies’ processes, connecting technology in electric and electronic arrangements, test method. Antistatic security.
4. Electron processes, sources and effect of electron beams
5. Systems used and use of electron processes.
6. Ion processes and their use.
7. X-ray processes. Radiation technology.
8. Nuclear processes and their use. Transmutation of semiconductor materials.
9. Laser processes, principle of operation and types of lasers.
10. Power lasers, characteristic and some of the laser application.
11. Ultrasonic processes, physical bases of ultrasonic.
12. Ultrasonic sources, usage of the ultrasonic effects in technology.
13. Electro-erosive processes and their use.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Kazelle J.: Elektrotechnické materiály a výrobní procesy - Kapitola 6. Elektronická skripta 2015 (CS)
Recommended reading
Elearning
Classification of course in study plans
- Programme BKC-MET Bachelor's 2 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Inorganic dielectrics. Asbestos, mica and mica products. Glass in electrical engineering. Production and processing of glass. Electrotechnical ceramics. Production and processing of ceramics. Oxide and oxygen-free ceramics.
3. Plastics for electrical engineering. Thermoplastics. Thermosets. Plastics with high heat resistance. Modification of plastics and plastics technology.
4. Conductive, resistive and magnetic materials.
5. Semiconductor materials - classification, structure, components, characteristics.
6. Semiconductor materials, area of application. Preparing of semiconductor materials.
7. Production of basic semiconductor structures.
8. Processing of metals and semifinished metal materials for construction elements of electrical and electronic equipments. Wire production. Welding and soldering of metal elements.
9. Surface treatment, lackquering, assembling of mechanical parts
10. Electron processes, effect of electron beams and their use. Ion processes.
11. X-ray processes. Radiation technology. Nuclear processes.
12. Laser processes, lasers distribution, characteristic and some of laser application.
13. Ultrasonic processes, ultrasonic sources, use of ultrasonic effect. Electro-erosive processes and their use.
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Havriliak-Negami diagram
3. a) Measurement of dielectric properties of ceramic barium titanate
b) Determination of the coefficient of nonlinearity of barium titanate ceramic
4. Measurement of temperature dependence of resistivity of semiconductor material
5. Measurement of drift mobility of minority charge carriers by using the pulse method
6. Band models simulation in semiconductor materials
Elearning