Course detail
Experimental Laboratory Methods
FAST-BJ017Acad. year: 2022/2023
The course is a review of routine and special laboratory methods and instrumentation used in the silicate industry, with a focus on the fields of ceramics, refractories and mortars and the field of technology in the evaluation of materials in terms of their suitability in the process and the assessment of performance of finished products and degradation construction materials.
Students will improve their knowledge in the implementation of physical-mechanical laboratory tests and become familiar with special methods such as high pressure mercury porosimetry, X-ray diffraction, differential thermal analysis, optical microscopy and scanning electron microscopy. Discusses the principles and methods of measuring the rheology of suspensions and tests, viscosity measurements of heat capacity and heat of reaction calorimetry, peculiarities of measuring pH in the hydrating cements, as well as the different nature of glass stability in acidic and alkaline environments, corrosion processes, the protection of steel reinforcement in concrete.
Lectures are supplemented by measurements on these laboratory and testing facilities in the exercise.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Sampling, preparation and treatment of samples for individual methods.
X-ray diffraction analysis, apparatuses, principle and utilization.
Microscopy in the range of the visible spectrum, apparatuses, principle and preparations.
Electron transmission microscopy, principle, apparatuses, utilization.
Scanning electron microscopy, principle, apparatuses, utilization.
Methods of grain size and specific surface determination.
Methods of density, volume mass and absorption determination.
High pressure mercury porozimetry, principle, apparatuses, utilization.
Differential thermal analysis, principle apparatuses, utilization.
Gravimetric thermal analysis, principle, utilization.
Contraction dilatometric thermal analysis, principle, utilization.
Principles of building materials testing, quality control, harmonization of 13standards and regulations.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Kučera J.,Doné P. Zkoušení stavebních materiálů a výrobků, skripta VŠB-TU Ostrava, 2002 (CS)
Recommended reading
Schmidt P. a kol. Základy zkušebnictví, CERM, Brno, 2008 (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus