Course detail
Mechanisation, Automation and Handling
FSI-HME-KAcad. year: 2021/2022
The subject introduces students to basic types of mechanization, handling and automation components and their theory and utilization in industrial applications of manufacturing systems. Especially is explained for forming, machining, welding, foundry and unconventional technologies. The theory focuses on all kinds of transport systems, cranes, carts and all types of containers, feeders, conveyors, orientators and other peripherals used in automated systems. Furthermore, flexible production systems, automated production lines, integrated production systems, including the analysis of robots and manipulators, are discussed.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Čop,V.: Automatizácia, , 0
Chvála,B.-Nedbal,J.-Dunay,G.: Automatizace, , 0
Recommended reading
Novák - Marcinčin, Josef. Application of virtual manufacturing in area of robotic workplaces design and operation. Univerzity of Zenica. Faculty of Mechanical Engineering. 2006. ISBN 9958617307
Palko, Anton a Juraj Smrček. Robotika: koncové efektory pre priemyselné a servisné roboty: navrhovanie - konštrukcia a riešenie. 1.vyd. Košice. 2004. 272 s. ISBN 80-8073-218-3
Rumíšek, P.: Automatizace výrobních procesů II. - tváření, Brno 1990, VUT - učební texty
Urbánek, J.: Automatizace výrobních procesů - obrábění, Brno 1990 , VUT - učební texty
Elearning
Classification of course in study plans
Type of course unit
Guided consultation in combined form of studies
Teacher / Lecturer
Syllabus
2. Introduction, shape division of components, classification, mechanization and automation equipment
3. Logic, logical circuits, detecting elements and sensors
4. Numerical control systems NC-CNC-DNC-HNC
5. Objects and solutions of mechanization, automation and manipulation in the field of metal forming technology
6. Objects and solutions of mechanization, automation and manipulation in the field of machining technologies, welding, casting and cutting
7. Solution of mechanization and automation problems in packaging, brazing, soldering, main principles
8. NC and CNC machines and their application in different technologies, principles
9. Production centers, automated production lines and transport systems
10. Materials handling means, cranes, lift trucks, transport and handling systems
11. Industrial robots and manipulators - principles, structure, controlling
12. Conditions for using the industrial robots at production systems, heads, robot equipment
13. Automation production systems and complex handling
Guided consultation
Teacher / Lecturer
Syllabus
2. Automation elements - use, circuits, project assignment
3. Boolean algebra
4. Introduction to automation and mechanization evaluation software
5. Working with the software (conveyors, slides)
6. Working with the software (lift trucks, manipulators and conveyors)
7. Working with the software (flexible production line, integrated production section)
8. Project solution with regard to mechanization and automation
9. Solutions for handling in storages and storaging systems
10. Classical elements of mechanization and manipulation in connection with production machines
11. Progressive methods for automation
12. Design of the AVS system using computer technology
13. Project's evaluation, test and attendance evaluation, subject-unit credit
Elearning