Course detail

Advanced Thermofluid Simulations

FSI-IMTAcad. year: 2021/2022

Theoretical part:
- Turbulence modeling. Time-averaged flow. Turbulent diffusion (viscosity and thermal conductivity), models for its determination. Advanced turbulent modeling.
- Multiphase flow
- Moving reference frame
- Modeling of thermal and solar radiation.
- Macros and automatisation of Star-CCM+ workflow.

Practical part:
Solution of complex fluid flow & heat transfer problems using the Star-CCM+ solver (3-D problems, thermal & solar radiation, Multiphase flow).

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Learning outcomes of the course unit

Theoretical basis of computational modelling of complex problems of fluid flow and heat transfer (turbulence models, two-phase flow, radiation). Extension of CFD code Star-CCM+ expertise.

Prerequisites

Theoretical basis of heat transfer, thermo mechanics and fluid mechanics. Fundamentals of computational modelling of fluid flow and heat transfer (discretization methods, transient solution, convective-diffusion problems, algorithms).

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Course is performed on personal computers equipped with software, which is sitable for solving problems connected to computational fluid dynamics

Assesment methods and criteria linked to learning outcomes

The graded course-unit credit awarding is based on the results of the semester project.

Course curriculum

Not applicable.

Work placements

Not applicable.

Aims

The course objective is to extend theoretical and practical knowledge and computational modelling of fluid flow and heat transfer expertise with regard to their potential use in the diploma thesis.

Specification of controlled education, way of implementation and compensation for absences

Attendance at seminars is required. Absence from seminars can be compensated for via make-up project.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

VERSTEEG, H K a W MALALASEKERA. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2. vyd. B.m.: Pearson Education Limited, 2005. ISBN 978-0-13-127498-3. (EN)
TU, Jiyuan, Guan Heng YEOH a Chaoqun LIU. Computational Fluid Dynamics: A Practical Approach. B.m.: Butterworth-Heinemann, 2007. ISBN 9780080556857. (EN)
WILCOX, David C. Turbulence modeling for CFD. 3rd vyd. B.m.: DCW Industries, 2006. ISBN 978-1928729082. (EN)

Recommended reading

Not applicable.

Classification of course in study plans

  • Programme N-ETI-P Master's

    specialization TEP , 2. year of study, winter semester, compulsory

Type of course unit

 

Lecture

26 hours, optionally

Teacher / Lecturer

Syllabus

1. CFD - Good practise guide
2. Numerical simulation of turbulent flow. Basics.
3. Reynolds Averaging of Navier-Stokes equations.
4. Turbulent viscosity models. Boussinesq approximation.
5. Algebraic models of turbulence. One- and Two-equation models.
6. Boundary conditions for turbulent flows. Turbulent boundary layer
7. Reynolds-Stress models. Large Eddy Simulation (LES).
8. Multiphase flow.
9. Methods of modelling multiphase flow (Euler/Lagrange approach).
10. Moving reference frames
11. Thermal radiation.
12. Modelling of solar loads.
13. Automation of workflow with Star-CCM+ solver.

Computer-assisted exercise

13 hours, compulsory

Teacher / Lecturer

Syllabus

1. CFD - Good practise guide - Grid independency test.
2. Numerical simulation of turbulent flow - Airflow in constricted tube, comparison with experimental results.
3. Multiphase flow (Lagrangian approach) - Transport and deposition of aerosols inside respiratory tract.
4. Multiphase flow (Eulerian approach) - Simulation of water surface using VOF method.
5. Moving reference frames - Airflow inside fan.
6. Thermal radiation - HVAC inside car cabin.
7. Automation of workflow with Star-CCM+ solver - Definition of boundary condition using user field function.