Course detail
Mathematical Modelling
FSI-PMMAcad. year: 2021/2022
Due to the development of computer technology, the numerical simulation has become helpful in designing and optimising foundry processes. Mathematical simulation is aimed at the tuning of the designed technology in the phase of production preparation in order to avoid expensive experimental testing. The simulation of foundry processes connects numerical methods, physics and computer technology. It enables the study of processes during melt flow, solidification and cooling of castings.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Exam - written and oral parts
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Nová, I.:Tepelné procesy ve slévárenských formách, TU Liberec, 2003 (CS)
Rappaz M., Dantzig A. : Solidification, 2nd edition. EPFL Press, 2016. ISBN 978-0-84938-238-3 (EN)
Recommended reading
Hattel JH, Pryds N, Thorborg J, Lipinski M, Schneider M, Hattel JH, (ed.).: Fundamentals of Numerical Modelling of Casting Processes. Polyteknisk Forlag, 2005. 540 p. (EN)
Herman, A. a kol.: Počítačové simulace ve slévárenství, Vydavatelství ČVUT, 2000
Elearning
Classification of course in study plans
- Programme N-SLE-P Master's 1 year of study, summer semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Application of CAD system in foundry processes
3. Methods of numerical simulation
4. Basic knowledge of heat transfer
5. Initial condition definition
6. Boundary condition definition
7. Thermo-physical properties
8. Calculation of porosity defects in casting
9. Simulation of gravity sand casting technology
10. Simulation of high-pressure die casting technology
11. Investment casting technology
12. Special processes – semi-solid processes
13. Post-processing and industrial cases
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Preparation of surface and volume meshes
3. Repairing of bad meshes
4. Definition of initial and boundary conditions
5. Calculation definition – modules, calculation steps
6. Examples of gravity casting calculation
7. Examples of pressure casting calculation
8. Examples of investment casting calculation
9. Calculation of special processes
10. Porosity calculation
11. Optimisation of gating and feeding systems
12. Post-processing
13. Results validation
Elearning