Course detail
Statistics and Optimization
FSI-USO-AAcad. year: 2021/2022
The course makes students familiar with introduction to operations research techniques for engineering problems. In the first part basic of probability theory and main principles of mathematical statistics (descriptive statistics, parameters estimation, tests of hypotheses, and linear regression analysis] are presented. The second part of the course deals with fundamental optimization models and methods for solving of technical problems. The principal ideas of mathematical programming are discussed: problem analysis, model building, solution search, especially and the interpretation of results. The particular results on linear and nonlinear programming are under focus.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Bazaraa, M. et al.: Nonlinear Programming,, John Wiley and Sons, 2012 (EN)
Boyd, S. and Vandeberghe, L.: Convex Optimization. Cambridge: Cambridge University Press, 2004. (EN)
Hahn, G. J. - Shapiro, S. S.: Statistical Models in Engineering.New York : John Wiley & Sons, 1994. (EN)
Montgomery, D. C. - Renger, G.: Applied Statistics and Probability for Engineers. New York : John Wiley & Sons, 2003. (EN)
Recommended reading
Classification of course in study plans
- Programme N-ENG-A Master's 2 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Random variable and vector, types, functional a numerical characteristics.
3. Basic discrete and continuous probability distributions.
4. Random sample, sample characteristics, and parameters estimation (point and interval estimates).
5. Testing statistical hypotheses
6. Introduction to regression analysis.
7. Introductory optimization: problem formulation and analysis, model building, theory.
8. Visualisation, algorithms, software, postoptimization.
9. Linear programming (LP): Convex and polyhedral sets. Feasible sets and related theory.
10. LP: The simplex method.
11. Nonlinear programming (NLP): Convex functions and their properties. Unconstrained optimization and selected algorithms.
12. NLP: Constrained optimization and KKT conditions.
13. NLP: Constrained optimization and related multivariate methods.
Exercise
Teacher / Lecturer
Syllabus
2. Probability - basic examples.
3. Functional and numerical characteristics of random variable.
4. Selected probability distributions - examples.
5. Point and interval estimates of parameters - examples.
6. Testing hypotheses - examples.
7. Linear regression (straight line), estimates, tests and plots.
8. Introductory problems - formulation, model building.
9. Linear problems: extreme points and directions.
10. Linear problems: simplex method.
11. Nonlinear problems - examples of the algorithm use (unconstrained optimization) .
12. Nonlinear problems - KKT.
13. Nonlinear problems examples of the algorithm use (constrained optimization)