Course detail
Nanotechnology
FSI-9NTCAcad. year: 2020/2021
The subject describes a recent progress in a rapidly developing multidisciplinary domain of nanotechnologies. The first, theoretical part gives an overview on a historical background and interlinks of the area, explains the reasons for an interest and importance of nanotechnologies and outlines physical principles of the nanoworld. It gives the students an overview on the methods of fabrication of nanostructures (nanosystems, and nanostructured materials) and with perspectives for their applications.
The second, practical part makes the students familiar with experimental methods of the study of nanostructures and surfaces, and also with fabrication of nanostructures by combination of electron beam lithography, ion beam technologies, and the methods of scanning probe microscopy, or other methods.
The subject is taught through seminars and laboratory experiments via active participation of students.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
In the practical part the students will obtain the experimental methods of nanostructure and surface study, as well as with the preparation of nanostructures with the combination of electron lithography, ion technologies and scanning probe microscopy methods. and other methods.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
D. Natelson: Nanostructures and Nannotechnology. Cambridge Univ. Press, 2015 (EN)
E. L. Wolf: Nanophysics and Nanotechnology. 2nd ed.. J. Wiley, 2006 (EN)
G. Cao, Y. Wang: Nanostructures and nanometerials.2nd ed. World Sci. 2011. (EN)
H. Lüth: Surfaces and Interfaces of Solids, Springer-Verlag, Berlin, 1993. (EN)
J. H. Davies: The Physics of Low Dimensional Semiconductors, Cambridge University (EN)
Nanotechnology, editor G. Timp, Springer-Verlag, New York 1999 (EN)
P. Harrison: Quantum Wells, Wires and Dots, J. Wiley & Sons, Chichester, 1999. (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
In the practical part the students will obtain the experimental methods of nanostructure and surface study, as well as with the preparation of nanostructures with the combination of electron lithography, ion technologies and scanning probe microscopy methods. and other methods.
I. Fabrication of nanostructures
A) Bottom-up
4. Fabrication of 2D - 0D nanostructures - PVD methods,....
5. Chemical synthesis of nanostructured anorganic materials
6. Chemical synthesis of molecular structures and nanofibres
B) Top - Down
Lithographic methods
II. Properties of nanostruktur
A) Quantum confinement
1. Electron structure and 3D - 0D density of states, applications in optoelectronics
2. Quantum wells and heterostructures, 2D electron gas
B) Transpor properties of nanostructures
Quantized electrical conductivity (quantum point contact), Coulombic blockade (Single Electron Transistor - SET)
Magnetic nanostructures and spintronics
III. Experimental part
Fabrication and analysis of nanostructures ¨
IV. Advanced topics (studying recent papers)