Course detail
Algebras of rotations and their applications
FSI-9ARAAcad. year: 2020/2021
Survey on mathematical structures applied on rigid body motion, particularly various representations of Euclidean space and its transformations. In detail, we will study groups SO(2), SO(3) and their Lie algebras, groups Spin(2), Spin(3), quaternions, their construction, properties and applications. Introduction to geometric algebras.
Language of instruction
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
HILDENBRAND, Dietmar. Foundations of geometric algebra computing. Geometry and computing, 8. ISBN 3642317936. (EN)
HILDENBRAND, Dietmar. Introduction to geometric algebra computing. Boca Raton, 2018. ISBN 978-149-8748-384. (EN)
MOTL, Luboš a Miloš ZAHRADNÍK. Pěstujeme lineární algebru. 3. vyd. Praha: Karolinum, 2002. ISBN 80-246-0421-3. (CS)
MURRAY, Richard M., Zexiang LI a Shankar. SASTRY. A mathematical introduction to robotic manipulation. Boca Raton: CRC Press, c1994. ISBN 0849379814. (EN)
PERWASS, Christian. Geometric algebra with applications in engineering. Berlin: Springer, c2009. ISBN 354089067X. (EN)
SELIG, J. M. Geometric fundamentals of robotics. 2nd ed. New York: Springer, 2005. ISBN 0387208747. (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Groups SO(2), SO(3), definitions, properties, matrix representations.
3. Algebras so(2), so(3), definitions, properties, matrix representations.
4. Matrix exponential, Baker-Campbell-Hausdorff formula.
5. Moving frame method, piecewise constant input on so(3).
6. Groups Spin(2) and Spin(3) as a double-cover of groups SO(2) and SO(3), respectively. Their topological properties.
7. Algebra of quaternions and the identification of unit quaternions with the group Spin(3).
8. Analytic geometry in terms of quaternions and dual quaternions.
9. Foundations of geometric (Clifford) algebras, specifically the cases of G2, CRA (G3,1) and CGA (G4,1).
10. Analytic geometry in CGA setting.