Course detail
Thermodynamic Engineering
FSI-KS1Acad. year: 2020/2021
The course “Engineering Thermodynamics” is part of theoretical basis of process engineering. Students will gain basic knowledge necessary for resolving practical tasks connected to material and power evaluations of physico-chemical processes and designing mechanical-technological systems in manufacturing and power industry or waste processing technologies. This course introduces students within one semester with methods and procedures used to describe state behaviour of gases and liquids, determine properties of substances and their mixtures required for all engineering designs (density, viscosity, thermal conductivity, diffusivity, etc.) and determine thermodynamic state variables and their changes during various processes. Thermodynamic factors influencing processes in technological equipment and conditions of thermodynamic balance are analysed. The emphasis is put on consideration the behaviour of gaseous and liquid in real conditions.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Basic knowledge of thermodynamics (state behaviour of ideal gas and liquid, the first and the second thermodynamic laws, main thermodynamic quantities).
Basic knowledge of chemistry (stoichiometric calculations, concentration expressions,).
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
To gain the credit, a semestral paper has to be submitted. The topic of the paper is given during the semester and the main tasks of the paper are continually discussed during exercises.
The exam is the form of the written test. In the test, the student has to prove the ability to solve individually given tasks and demonstrate theoretical knowledge of the lectures’ topics. The overall evaluation also considers the results of the final credit tests and the level of the semestral paper.
Course curriculum
Work placements
Aims
The course introduces students to wide range of substance properties important for balance, hydraulic, thermal and diffusion calculations of process equipment. The gained knowledge will enable the students to understand the influence of working conditions on the processes in technological equipment.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Chopey, N., P., Handbook of chemical engineering calculation. third edition, 2004, McGraw-Hill International Editions, Chemical Engineering Series, 2004, New York, 640 s., ISBN 0-07-136262-2 (EN)
Jürgen Gmehling, Bärbel Kolbe, Michael Kleiber and Jürgen Rarey,2012, Chemical Thermodynamics for Process Simulation, 760 p., Wiley/VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, ISBN 978-3-27-31277-1 (DE)
Riazi, M.R., Characterization and properties of petroleum fractions. ASTM International, 1st edition, West Conshohocken, PA (USA),.2005, ISBN 407-0-8031-3361-8 (EN)
Sandler, S., I., Chemical, biochemical, and engineering thermodynamics, 4th edition, 2006, John Wiley & Sons, Hoboken, 945 p, ISBN 978-0-471-66174-0 (EN)
Shavit A., Gutfinger Ch., Thermodynamics: From Concepts to Applications, 2nd edition, 2009, 649 p, CRC PRES Taylor & Francis Group, Boca Raton, ISBN:978-1-4200-7368-3 (EN)
Recommended reading
Míka, V. a kol.: Příklady a úlohy z chemického inženýrství II., VŠCHT Praha (1997). (CS)
Neužil, L., Míka, V.,: Řešení úloh z chemického inženýrství I a II, VŠCHT Praha (1997).
Richard M. Felder, Ronald W. Rosseau: Elementary Principles of Chemical Processes, 2005, Third Edition, John Wiley & Sons, Inc., Hoboken – NJ (USA), ISBN 0-471-68757-X (EN)
Elearning
Classification of course in study plans
- Programme N-PRI-P Master's 1 year of study, winter semester, compulsory
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. The main usable units in the practice of process engineers. Expressing of concentration, conversion of values in different units (Anglo-Saxon and SI)
3. State behaviour of real gases and liquids, deviations from ideal behaviour of gases and liquids. Phase diagrams and equations of state of gases.
4. Transport properties of gases and liquids and their mixtures. The density of liquids.
5. Specific heat and enthalpy. The first thermodynamic theorem and its application. Determination of specific heat and enthalpy of individual substances and gas mixtures. Dependence of specific enthalpy of real gases on temperature and pressure.
6. Heat of reaction. Hess’s and Kirchhoff’s laws.
7. Higher and lower heating values. Combustion of gaseous fuels and hydrocarbons.
8. Expansion and compression of gases. Adiabatic processes, Poisson’s equations, gas expansion and compression, isoenthalpic process and Joule-Thomson coefficient.
9. Another thermodynamic functions (internal energy, entropy, Gibbs and Helmholtz functions). The influence of temperature and pressure on the thermodynamic properties of real gases and liquids. The second law of thermodynamics.
10. Molar Gibbs energy, fugacity and activity.
11. Phase equilibrium in a one-component system. Clausius-Clapeyron’s equation and its application for heat of evaporation and vapour pressure determination.
12. Liquid-gas phase equilibria. Ideal and real liquid solutions. Raoult’s and Raoult-Dalton’s laws and their application. Henry’s law and its application.
12. The principles of distillation and rectification. The impact of non-ideal liquid systems on behaviour of real systems during distillation and rectification.
13. Expression of equilibrium constant of reactions. Factors affecting the thermodynamic equilibrium.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
Typical problems based on the previous lectures are solved, especially:
- Concentration conversions, calculations of properties of ideal gas systems.
- Mass and energetic balance of steady and unsteady systems.
- Gas compression/expansion and energy consumption/release.
- Application of gas state equations for real gases.
- Calculations of real systems thermodynamic properties (enthalpy, specific heat, entropy, Gibbs energy.
- Physical properties calculation of real gases (Density, viscosity and heat conductivity).
- Calculations of reaction heat, HHV and LHV.
- Calculations of reaction conversion rate and equilibrium composition.
- Fugacity and activity of real gas or liquids systems calculations.
- Saturated vapour pressure a heat of evaporation calculations.
- Balance of combustion of gaseous fuel and composition of wet combustion air.
- Gas-Liquid phase equilibrium.
Elearning