Course detail
Discrete Mathematics
FIT-IDMAcad. year: 2022/2023
Sets, relations and mappings. Equivalences and partitions. Posets. Structures with one and two operations. Lattices and Boolean algebras. Propositional and predicate calculus. Elementary notions of graph theory. Connectedness. Subgraphs and morphisms of graphs. Planarity. Trees and their properties. Basic graph algorithms. Directed graphs.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
- The knowledge of students is tested at exercises at five written tests for 4 points each and at the final exam for 80 points.
- If a student can substantiate serious reasons for an absence from an exercise, (s)he can attend the exercise with a different group (please inform the teacher about that).
- Passing boundary for ECTS assessment: 50 points.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- The formal language of mathematics. Basic formalisms - statements, proofs, propositional and predicate logic.
- Intuitive set concepts. Basic set operations. Cardinality. Sets of numbers. The principle of inclusion and exclusion.
- Proof techniques.
- Binary relations, their properties and composition.
- Reflective, symmetric, and transitive closure. Equivalences and partitions.
- Partially ordered sets, lattices. Hasse diagrams. Mappings.
- Basic concepts of graph theory. Graph Isomorphism, trees, trails, tours, and Eulerian graphs.
- Finding the shortest path, Dijkstra's algorithm. Minimum spanning tree problem. Kruskal's and Jarnik's algorithms. Planar graphs.
- Directed graphs.
- Binary operations and their properties.
- Algebras with one operation, groups.
- Congruences and morphisms.
- Algebras with two operations, lattices as algebras. Boolean algebras.
Computer-assisted exercise
Teacher / Lecturer
Syllabus