Course detail
Artificial Intelligence Algorithms
FSI-VAIAcad. year: 2020/2021
The course introduces basic approaches to artificial intelligence algorithms and classical methods used in the field. Main emphasis is given to automated formulas proves, knowledge representation and problem solving. Practical use of the methods is demonstrated on solving simple engineering problems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Luger, G.F. Artificial Intelligence. Structures and Strategies for Complex Problem Solving. Addison-Wesley 2008. (EN)
Negnevitsky, M. Artificial Intelligence. A Guide to Intelligent Systems. Pearson Education 2011. (EN)
Russel, S. and Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition. Pearson Education 2021. (EN)
Recommended reading
Poole, D.L. and Mackworth, A.K. Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press 2023. https://artint.info/3e/html/ArtInt3e.html (EN)
Elearning
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Uninformed search in state space.
3. Informed search in state space.
4. Problem solving by decomposition into sub-problems, AND/OR search methods.
5. Game playing methods.
6. Predicate logic and resolution method. Non-traditional logics.
7. Horn logic and Prolog.
8. Knowledge representation by rules and corresponding methods of reasoning.
9. Non-rule and hybrid knowledge representation and corresponding methods of reasoning.
10. Classical approaches to handling uncertainty (pseudo-bayesian approach, certainty factors).
11. Theoretical approaches to handling uncertainty (bayesian nets, fuzzy approach).
12. Machine learning.
13. Agents and multiagent systems.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Uninformed methods of state space search.
3. Informed methods of state space search.
4. A* algorithm and its modifications.
5. Methods of AND/OR graph search.
6. Game playing methods.
7. Predicate logic and resolution method.
8. Logic programming and Prolog.
9. Rule-based programming and Clips.
10. Handling uncertainty in rule-based systems.
11. Bayesian nets.
12. Machine learning methods.
13. Presentation of semester projects.
Elearning