Course detail
Teoretical elements of Composite Materials
FAST-DJB046Acad. year: 2020/2021
Development, distribution and types of composite materials and their characteristics.
Matrix and dispersed phase materials.
Composite action in the material structure. The influence of the structure on the properties of composites.
Variables defining properties of composites. Design of composites, choice of components and production problems.
Particle Composites I to III. type.
Fiber composites, fiber types (long and short fibers, carbon, metal, glass, basalt and polymer, whiskers) and matrix types.
Composite materials with cement matrix and fiber reinforcement, glass fiber reinforced concrete, fiber cement composites, fiber reinforced concrete with steel fibers. Slenderness ratio. Critical fiber length.
Composite materials with polymeric matrix and fiber reinforcement (FRP). Pultrussion process. New materials for reinforcing structures, lamellas, reinforcement fabrics. Composites reinforced with strips. Laminates. Hybrid composites.
Unidirectional composites - Relative representation of phases (volume and mass representation of components, basic computational relations). Longitudinal strength and stiffness, working diagram during tensile stress (graphs, basic calculation relationships). Thermal expansion, transport properties, transmission coefficient (graphs, basic computational relations). Module of elasticity and strength of short-fiber composites.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Definition of composite effect, variables defining the composite properties, their structural classification.
3. Design of composites.
4. Particles composites of I. till III.type; specific characteristics.
5. Fibre composites, fibres, matrices.
6. Composite materials with cement matrix and fibrous reinforcement.
7. Glass-fibre-concrete, fibre-concrete with polymer fibres, design, application.
8. Fibre-concrete with steel fibres, design, application.
9. Composite materials with polymer matrix and fibrous reinforcement.
10. Technology composite materials manufacture, with polymer matrix and fibre reinforcement.
11. New materials for strengthening of structures, lamellas, reinforcing fabrics.
12. Composites reinforced by bands. Laminates. Hybrid composites.
13. Unidirectional composites, abundances of fibres. Mechanics of unidirectional composites.Longitudinal strength and stiffness, stress strain diagram during tensile load (graphs, basic calculation formulae, Behaviour in the case of failure. Thermal dilatation and transport properties. Elasticity modulus and strength of short-fibre composites.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme DPC-M Doctoral 1 year of study, summer semester, compulsory-optional
- Programme DPA-M Doctoral 1 year of study, summer semester, compulsory-optional
- Programme DPC-M Doctoral 1 year of study, summer semester, compulsory-optional
- Programme DKA-M Doctoral 1 year of study, summer semester, compulsory-optional
Type of course unit
Lecture
Teacher / Lecturer
Syllabus