Course detail
Mathematical Modeling of Geotechnical Constructions
FAST-BFB008Acad. year: 2020/2021
The course is mainly focused on geotechnical constructions analyses using the finite element method. In the first part of the course, basics of continuum mechanics will be repeated. The major emphasis is placed on a description of soil constitutive models, starting with the simplest elastic models, continuing with more complicated models involving plastic (irreversible) component of strain. In the following part of the course, students will become familiar with the process of creating a mathematical model both from a theoretical and practical point of view. Acquired knowledge will be applied in order to solve various types of geotechnical constructions (shallow foundations, deep foundations, earth retaining structures, embankments, cuts, underground structures) using Plaxis 2D software. In the last part of the course, students will prepare and present their individual projects.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Continuum mechanics – summarization, review of numerical methods. Review of soil constitutive models.
3. Introduction to the finite element method. Linear, non-linear elasticity.
4. Introduction to the plastic behavior of geomaterials.
5. Perfectly plastic constitutive models.
6. Elastic – plastic constitutive models with hardening.
7. Undrained versus drained analysis, consolidation analysis.
8. Theory and modeling of foundations.
9. Theory and modeling of earth retaining structures, excavations.
10. Theory and modeling of earth constructions. Stability analysis.
11. Theory and modeling of underground structures.
Work placements
Aims
To learn to utilise selected software for design of geotechnics structures.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Exercise
Teacher / Lecturer
Syllabus