Course detail
Graph Algorithms (in English)
FIT-GALeAcad. year: 2020/2021
This course discusses graph representations and graphs algorithms for searching (depth-first search, breadth-first search), topological sorting, searching of graph components and strongly connected components, trees and minimal spanning trees, single-source and all-pairs shortest paths, maximal flows and minimal cuts, maximal bipartite matching, Euler graphs, and graph coloring. The principles and complexities of all presented algorithms are discussed.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Copy of lectures.
J. Demel, Grafy a jejich aplikace, Academia, 2002. (More about the book (http://kix.fsv.cvut.cz/~demel/grafy/))
J. Demel, Grafy, SNTL Praha, 1988. (CS)
J. Demel, Grafy a jejich aplikace, Academia, 2002. (Více o knize) (CS)
J.A. Bondy, U.S.R. Murty: Graph Theory, Graduate text in mathematics, Springer, 2008. (EN)
J.A. McHugh, Algorithmic Graph Theory, Prentice-Hall, 1990. (EN)
J.L. Gross, J. Yellen: Graph Theory and Its Applications, Second Edition, Chapman & Hall/CRC, 2005. (EN)
J.L. Gross, J. Yellen: Handbook of Graph Theory (Discrete Mathematics and Its Applications), CRC Press, 2003. (EN)
R. Diestel, Graph Theory, Third Edition (http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/), Springer-Verlag, Heidelberg, 2000. (EN)
T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms (http://www.introductiontoalgorithms.com), McGraw-Hill, 2002. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Introduction, algorithmic complexity, basic notions and graph representations.
- Graph searching, depth-first search, breadth-first search.
- Topological sort, acyclic graphs.
- Graph components, strongly connected components, examples.
- Trees, minimal spanning trees, algorithms of Jarník and Borůvka.
- Growing a minimal spanning tree, algorithms of Kruskal and Prim.
- Single-source shortest paths, Bellman-Ford algorithm, shortest path in DAGs.
- Dijkstra algorithm. All-pairs shortest paths.
- Shortest paths and matrix multiplication, Floyd-Warshall algorithm.
- Flows and cuts in networks, maximal flow, minimal cut, Ford-Fulkerson algorithm.
- Matching in bipartite graphs, maximal matching.
- Graph coloring.
- Eulerian graphs and tours, Hamiltonian graphs and cycles.
Project
Teacher / Lecturer
Syllabus
- Solving of selected graph problems and presentation of solutions (principle, complexity, implementation, optimization).