Course detail
Design of Electronic Devices
FEKT-BPC-KEZAcad. year: 2020/2021
Design and properties of signal lines, supply lines and distribution frames - suppression of interference and ground loops.
Parasitic events and their suppression - coupling in input and output circuits, parasitic capacitances and inductances, thermoelectric voltage, overvoltage on inductive load, reflections on lines, crosstalk. Electric and magnetic field screening, equipotential guarding. Choice of components and application recommendation - discrete elements, operational amplifiers, comparators, electronic switches, A/D and D/A converters, sample-and-hold elements, digital circuits, microprocessors. Mechanics design: regulation, control and indication elements - lay-out on the front panel, instrument housing design, heat removal, thermostatic elements. Printed circuits, wired printed circuits, connection of conductors and components. Safety requirements in instrument design. Methodology for the debugging of electronic device.
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Recommended optional programme components
Literature
NIKNEJAD, A.M.: Electromagnetics for High-Speed Analog and Digital Communication Circuits. Cambridge, 2007
VRBA, Kamil a HANÁK, Pavel. Vybrané problémy konstrukce elektronických přístrojů pro integrovanou výuku VUT a VŠB-TUO, Brno: VUT v Brně 2015
ARCHAMBEAUTT, B.R.: PCB Design for Real-World EMI Control. Kluwer Academic Publishers, 2002
HALL, S.H.; HECK, H.L.: High-Speed Digital Designs. Wiley, 2009
ARCHAMBEAULT, Bruce a DEWNIAK, James. PCB Design for Real-World EMI Control. Heidelberg: Springer 2002, ISBN: 978-4757-3642-7
LINEAR TECHNOLOGY: Linear Applications Handbook. Linear Technology, Milpitas 1999
NATIONAL SEMICONDUCTOR: National Analog and Interface Products Databook. National Semiconductor, Santa Clara 1999
FAIRCHILD: Analog - mixed signal, interface, logic, non-voltatile memory, power products. Fairchild Semiconductors, www.fairchildsemi.com
Buchanan J.E.: BiCMOS/CMOS system design. McGraw-Hill, New York 1998
Ginsberg G. L.: Printed circuits design. McGraw-Hill, New York 1999
VRBA, K.: Konstrukce elektronických zařízení, elektronická skripta, VUT v Brně, 2013
Vrba, K., Hanák, P. Vybrané problémy konstrukce elektronických přístrojů pro integrovanou výuku VUT a VŠB-TUO
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Up to 20 points can be had for design exercises. Part of the design exercises can be in the form of individual project. The examination proper is a written examination and up to 80 points can be awarded for it. The examination is focused on testing the knowledge of application principles in the design of electronic instruments, from the viewpoint of both electronic and mechanical solutions.
Language of instruction
Work placements
Course curriculum
2. Power supply design: distribution to individual systems, distribution on PCBs, power supply decoupling for analog and digital circuits
3. Grounding (earth) distribution, galvanic isolation of individual systems: low-frequency transformer, impulse transformer, optoelectronic, digital isolators with capacitive coupling
4. Electrical field shielding, magnetic field shielding, equipotential shielding
5. Selection of components and their application principles: RLC passive elements, connectors, piezoelectric crystal oscillators, overvoltage and overcurrent protection, operational amplifiers, comparators, sample-and-hold circuits, ADC and DAC converters, digital logic
6. Mechanical design: control and display elements and their layout on the front panel, types of instrument cabinets, resistance against shock and vibration, resistance to different environments, EMC protection
7. Heat removal from components and instrument cabinets, temperature stabilization (thermostats)
8. Component interconnect methods - manual and machine soldering, solder joints defects
9. Safety requirements for electronic devices design
10. Circuit debugging: fault localisation in analog circuits, troubleshooting in digital circuits
Aims
Specification of controlled education, way of implementation and compensation for absences
Classification of course in study plans
- Programme BPC-AMT Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-EKT Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-IBE Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-MET Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-SEE Bachelor's, any year of study, summer semester, 5 credits, elective
- Programme BPC-AUD Bachelor's
specialization AUDB-ZVUK , 2. year of study, summer semester, 5 credits, compulsory-optional
specialization AUDB-TECH , 3. year of study, summer semester, 5 credits, compulsory-optional - Programme BPC-TLI Bachelor's, 3. year of study, summer semester, 5 credits, compulsory-optional
Type of course unit
eLearning