Course detail
Applied Statistics and Design of Experiments
FSI-XAPAcad. year: 2019/2020
Students sometimes use statistics to describe the results of an experiment or an investigation. This process is referred to as data analysis or descriptive statistics. Technicians also use another way; if the entire population of interest is not accessible to them for some reason, they often observe only a portion of the population (a sample) and use statistics to answer questions about the whole population. This process is called inferential statistics. Statistical inference is the main focus of the course.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Meloun, M. - Militký, J.: Statistické zpracování experimentálních dat. Praha: PLUS, 1994. (CS)
Recommended reading
Montgomery, D. C. - Renger, G.: Applied Statistics and Probability for Engineers. New York : John Wiley & Sons, 2003.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Common and special causes of variation.
3. Normal distribution in engineering subjects.
4. Distributions of averages.
5. Basic assumptions for different types of control charts.
6. Confidence intervals.
7. Hypothesis testing.
8. Outliers.
9. Correlation.
10. Linear regression model.
11. Factorial experiment, orthogonal designs.
12. Full and fractioanal design.
13. Process optimization with design experiment
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Examples of common and special causes.
3. Normal distribution in engineering subjects.
4. Probability density functions and probability distributions.
5. Computation of distributions of averages.
6. Basic assumptions for different types of control charts.
7. Confidence intervals for different sizes of samples.
8. Hypothesis testing.
9. Grubbs and Dixon tests.
10. Linear regression model.
11. Factorial experiment.
12. Orthogonal designs, full and fractioanal design.
13. Process optimization with design experiment.