Course detail

Low Power Electrical Sources

FEKT-LMZEAcad. year: 2019/2020

The course is focused on the use of small power sources in terms of sustainable development. They are specified the possibility of using solar, wind and hydro plants in our country with according to applicable law. It is also clarified the issue of cogeneration of low power and possibilities of using other alternative sources of energy, such as heat pumps, Stirling engines and fuel cells.

Learning outcomes of the course unit

Graduate of this course is able to:
- Discuss the advantages and disadvantages of renewable energy sources
- Design photovoltaic plants
- Design small hydropower plants
- Perform basic design of energy systems with renewable energy sources
- Discuss and clarify the impact of renewable energy on the electricity grid
- Professionally evaluate the properties of hybrid energy systems


The subject knowledge on the Bachelor´s degree level is requested. Students must be able to explain and clarify the following issues: - Structure and the parting of electric power system - Basic terminology of power engineering - Principle of power generation


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

MASTNÝ, P.; DRÁPELA, J.; MACHÁČEK, J.; PTÁČEK, M.; RADIL, L.; BARTOŠÍK, T.; PAVELKA, T.; MIŠÁK, S. Obnovitelné zdroje elektrické energie. EFEKT. Praha, České vysoké učení technické v Praze. 2011. 256 p. ISBN 978-80-01-04937-2. (CS)

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations.
Teaching consists of lectures, computer laboratories and practical labs. The communication platform of the course is on e-learning. Students handed over three individual projects and attend for five laboratory exercises. The course also includes two expert excursions.

Assesment methods and criteria linked to learning outcomes

- two semestral projects - 2 x 10 points
- one homework - 6 points
- three laboratory projects - 24 points (for each task is an entry test per 2 points - 1 point is minimum for graduation)
- final exam max. 50 points - practical (20 points) and oral (30 points) part

The necessary condition to get credits is to obtain at least 30 points in evaluated activities.

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Introduction to small sources, performance balance, energy potential, photovoltaic systems-Present and Future
2. Proposal for photovoltaic systems
3. Regulators and inverters, internal wiring, control and communication capabilities
4. Fundamentals of EMC, conditions and consequences of connecting small sources with inverters and regulators
5. Accumulation of electricity - types of batteries, function principles, balancing systems, communication and control
6. Solar thermal power plants, thermal energy storage
7. Heat pumps - function principle, heating factor, integration into thermal systems, operating modes
8. Wind power - wind conditions of Europe and in the Czech Republic (wind energy potential in the country), types of wind turbines, electrical and operating parameters
9. Wind power - control of wind power, the effects of WP on power system operation, integration of WP in power system, operation economy
10. Small hydropower plants - operational and electrical parameters, integration of the SHP into the electricity system, energy potential of the watercourses in the Czech Republic, basic distribution of the SHP, basic hydrological calculations
11. Cogeneration units - construction, power supply connection, start cycle analysis and operational characteristics
12. Biomass - the use of biofuels for small power plants, sources of biomass co-burning of biomass, economic assessment systems
13. Energy systems for modern construction, design of energy resources, further development

Laboratory exercises:
1. Hybrid system analysis
2. Operational measurement of PVS
3. Verification of Savonius rotor properties
4. Measurement of HP operating parameters
5. Performance characteristics of power flow controllers
6. Operating characteristics of the inverters
7. Excursions to PVS and WPP or SHP

Computer exercises:
- procedures for data analysis and processing, SMA, Fronius programs
- example of PVS realization, hybrid system PVS + WPP
- GUI in Matlab, creation of graphical outputs
- Semester project


Introducing students with the opportunities and potential of utilization of small power sources such as solar, wind, hydro and cogeneration systems in terms of sustainable development. Clarify the issue of integrating these sources into power systems and describe their impact on the operation of the electricity system.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Classification of course in study plans

  • Programme EEKR-ML1 Master's

    branch ML1-EEN , 1. year of study, winter semester, 5 credits, optional specialized

  • Programme EEKR-CZV lifelong learning

    branch ET-CZV , 1. year of study, winter semester, 5 credits, optional specialized

Type of course unit



26 hours, optionally

Teacher / Lecturer

Exercise in computer lab

6 hours, optionally

Teacher / Lecturer

Laboratory exercise

20 hours, compulsory

Teacher / Lecturer


eLearning: opened course