Course detail
Neural Networks, Adaptive and Optimum Filtering
FIT-QB4Acad. year: 2018/2019
In its first part, the course is devoted to providing an overview of types of architecture of neural networks and to a detailed analysis of their properties. Applications of neural networks in signal and image processing and recognition are included in this treatment. In the second part, the course deals with the theory of optimum detection and restoration of signals in its classical and generalised forms, emphasising the common base of this whole area. The subject highlights the common view-points in the area of neural networks and in the area of optimised signal processing.
Language of instruction
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme CSE-PHD-4 Doctoral
branch DVI4 , 0 year of study, summer semester, elective
- Programme CSE-PHD-4 Doctoral
branch DVI4 , 0 year of study, summer semester, elective
- Programme CSE-PHD-4 Doctoral
branch DVI4 , 0 year of study, summer semester, elective
- Programme CSE-PHD-4 Doctoral
branch DVI4 , 0 year of study, summer semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Architektury a klasifikace neuronových sítí. Neuron jako procesor a klasifikátor, metody tréninku, nenaučitelné problémy
- Dopředné sítě, jednoduchý a vícevrstvý perceptron. Učení - zpětné šíření chyby jako iterativní minimalizace střední kvadratické odchylky
- Řízené a neřízené učení. Zobecňování znalostí a optimální stupeň tréninku
- Sítě s vzájemnými vazbami. Hopfieldovy sítě, chování, stavový diagram, atraktory, učení. Sítě se skrytými uzly
- Využití relaxační minimalizace "energie" pro optimalizační úlohy, využití sítě jako asociativní paměti. Stochastický neuron a simulované žíhání, Boltzmannův stroj
- Rekursivní a Jordanovy sítě. Soutěživé učení
- Kohonenovy mapy, asociativní učení, automatická lokální organizace, zjemnění klasifikace
- Možnosti neuronových sítí jako signálových procesorů a analyzátorů, praktické aplikace ve zpracování a restauraci signálů a obrazů
- Optimální detekce a restaurace signálu - přístupy. Nelineární "přizpůsobené" filtry
- Model zkreslení, LMS-filtrace, diskretní Wienerův filtr v nestacionárním prostředí
- Kálmánova filtrace ve skalární verzi, vektorové zobecnění ve stacionárním a nestacionárním prostředí
- Adaptivní filtrace, adaptační algoritmy, rekursivní realizace adaptivní filtrace, filtrace metodou stochastického gradientu
- Typické aplikace adaptivní filtrace. Srovnání konceptů optimální a adaptivní filtrace s neuronově orientovaným přístupem
Guided consultation in combined form of studies
Teacher / Lecturer