Course detail
Computer Graphics Principles
FIT-IZGAcad. year: 2018/2019
Overview of fundamental principles of computer graphics (vector and raster based) and his consequence for real graphical applications. Basic operations to be performed in 2D and 3D computer graphics. Specification of principles and usage of main graphical interfaces. Methods and algorithms for drawing lines, circles and curves (Bezier and NURBS) in 2D. Principles of closed areas clipping and filling. Methods and solutions for: 2D/3D object transformations, visibility problem, lighting, shading and texturing. Basics of photorealistic rendering of 3D scenes. Different methods of 3D geometry representation. Alias in computer graphics and antialiasing methods.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
- Student will get acquaint with the basic principles of 2D and 3D computer graphics.
- Student will learn the fundamentals of using main graphical programming interfaces.
- He/she will get acquaint with algorithms for rasterisation and clipping of 2D graphic primitives and filling of closed regions.
- He/she will learn algorithms for 2D and 3D transformations, visibility solution, lighting, shading and texturing.
- Student will learn the fundamentals of photorealistic rendering of 3D scenes.
- He/she will get acquaint with different techniques of 3D objects geometry representation.
- He/she will get acquaint with sources of alias and basics of antialiasing methods.
- He/she will practice implementation of vector and raster based graphic algorithms.
- The students will learn how to solve simple problems, individually or in small teams.
- They will also improve their practical programming skills and knowledge of development tools.
Prerequisites
- It is essential to have basic knowledge of programming in C language.
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- Project - 18 points.
- Evaluated laboratory tasks, 6 x 3 bodů - 18 points.
- Midterm written exam - 12 point.
- Final written examination - 52 points.
- Minimum for the final written exemination is 20 points.
- Minimum to pass the course according to the ECTS assessment - 50 points.
Exam prerequisites:
Student has to get at least 20 points from the project, laboratories and the midterm exam for receiving the credit and then for entering the exam. Plagiarism will cause that involved students are not classified and disciplinary action can be initiated.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
- Project needs to be submitted to the faculty information system and is evaluated at the end of the semester.
- Laboratory tasks are evaluated during them.
- Midterm and final written exams.
- In justified cases, it is possible to accomplish laboratories in other date, and the mid-term exam by extending the final exam.
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Hughes, John F., et al., Computer Graphics: Principles and Practice, Third Edition, Addison-Wesley, 2014
Lengyel, E.: Mathematics for 3D Game Programming and Computer Graphics, Third Edition, 3rd Edition, 2012
Materiály k přednáškám a video záznamy přednášek (CS)
Sellers, G., et al., OpenGL Superbible: Comprehensive Tutorial and Reference, 7th Edition, 2015.
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Introduction to computer graphics - raster vs. vector graphics. Colors and color models, color space reduction, black&white images.
- Rasterisation of basic vector primitives
- Antialiasing. 2D clipping.
- Closed area filling.
- 2D and 3D transformations.
- Introduction to 2D graphics API and minimalistic 2D graphic application.
- Curves in computer graphics.
- Basics of 3D scene visualization, 3D transformations and projections.
- 3D object representations.
- Lighting models and smooth surface shading. Introduction to the OpenGL library.
- Visibility problem.
- Textures and texturing. Modern computer graphics, principles of 3D graphics API, rendering pipeline, etc.
- Basics of photorealistic rendering, raytracing and radiosity.
Exercise in computer lab
Teacher / Lecturer
Syllabus
- Graphical image formats and color space reduction.
- Basic object rasterisation.
- Visualization of 2D spline curves.
- Filling of 2D closed regions.
- 3D transformations.
- Basics of OpenGL.
Project
Teacher / Lecturer
Syllabus