Course detail
Diagnostics Systems
FSI-ZDIAcad. year: 2018/2019
The course familiarizes students with modern technical diagnostics and its importance for the design and operation of contemporary machines. It defines the basic concepts and categories of reliability and technical diagnostics. Special emphasis is placed on vibroacoustic diagnostics, especially on the methods of processing a diagnostic signal in the time and the frequency domain. Methods of technical diagnostics of vehicles chassis and choice of diagnostic appropriate quantities are discuss. In the course, the students are made the acquaintance of disassembly diagnostic of suspension damper, their ideal behaviour, methods of diagram evaluation, diagnostics of the most frequented faults and methods of damping force control. Also, course deals with the noise as a diagnostic quantity and with the professional software platforms for diagnostic systems. Furthemore, students learn about On-Board diagnostics of transport vehicles, specifically with OBD-II standard, data communication buses and networks use in automotive, architecture of electronic control units, communication by the diagnostics connector, control methods of combustion process in vehicle engine and its influence on emissions.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Examination: course is finished by the final test during 4th week. In the test, the student has to prove knowledge of basic terms, important principles and their application.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
• Reliability of system element, whole system reliability.
• Importance of technical diagnostics.
• Diagnostics without disassembling and with disassembling.
• Contact and non-contact diagnostics.
2. Fundamentals of the technical diagnostics.
• Diagnosis, prognosis, genesis.
• Diagnostic tools, diagnostic system.
• Technical condition of object, diagnostic quantities.
• Failure, operability, functionality, integrity.
3. Vibroacoustic diagnostics.
• Fundamentals, mechanical oscillations of machines.
• Vibrodiagnostic systems.
• Displacement transducers, position transducers.
• Velocity transducers, accelerometers, RPM meters, latch sensors.
4. On-board diagnostic of the vehicles.
• State-of-art of the vehicle control systems.
• Electronic Control Unit.
• Automotive data buses, On Board Diagnostic.
• CAN-Bus communication protocol.
5. Application of TD on the car chassis.
• Diagnostic of vehicle suspension without disassembling.
• Quarter car suspension model
• Resonance – adhesion testers (EUSAMA).
• Resonance – amplitude testers.
• Passive systems with assessment of oscillation response.
6. Suspension damper diagnostics
• Design types of dampers
• Force-velocity and Force-stroke diagrams
• Damper characteristcs - linear x nonlinear
• The most frequented faults
• Damper stands for disassembly testing
• Methods of damping force control
• Diagnostics of response time of magnetorheological damper