Course detail

Mathematical Analysis

FIT-IMAAcad. year: 2017/2018

Limit and continuity, derivative of a function. Partial derivatives. Basic differentiation rules. Elementary functions. Extrema for functions (of one and of several variables). Indefinite integral. Techniques of integration. The Riemann (definite) integral. Multiple integrals. Applications of integrals. Infinite sequences and infinite series. Taylor polynomials.

Language of instruction

Czech

Number of ECTS credits

6

Mode of study

Not applicable.

Learning outcomes of the course unit

The ability of orientation in the basic problems of higher mathematics and the ability to apply the basic methods. Solving problems in the areas cited in the annotation above by using basic rules. Solving these problems by using modern mathematical software.

Prerequisites

Secondary shool mathematics and the kowledge from Discrete Mathematics course.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Not applicable.

Assesment methods and criteria linked to learning outcomes

Study evaluation is based on marks obtained for specified items. Minimimum number of marks to pass is 50.

Course curriculum

Syllabus of lectures:
  1. Function of one variable, limit, continuity.
  2. Differential calculus of functions of one variable I: derivative, differential, Taylor theorem.
  3. Differential calculus of functions of one variable II: maximum, minimum, behaviour of the function.
  4. Integral calculus of functions of one variable I: indefinite integral, basic methods of integration.
  5. Integral calculus of functions of one variable II: definite Riemann integral and its application.
  6. Infinite number and power series.
  7. Taylor series.
  8. Functions of two and three variables, geometry and mappings in three-dimensional space.
  9. Differential calculus of functions of more variables I: directional and partial derivatives, Taylor theorem.
  10. Differential calculus of functions of more variables II: funcional extrema, absolute and bound extrema.
  11. Integral calculus of functions of more variables I: two and three-dimensional integrals.
  12. Integral calculus of functions of more variables II: method of substitution in two and three-dimensional integrals.

Syllabus of numerical exercises:
The class work is prepared in accordance with the lecture.
Syllabus of computer exercises:
Trained tasks are prepared to follow and complete study matter from lectures and seminar practice.
Syllabus - others, projects and individual work of students:
  • Limit, continuity and derivative of a function. Partial derivative. Derivative of a composite function.
  • Differential of function of one and several variables. L'Hospital's rule. Behaviour of continuous and differentiable function. Extrema of functions of one and several variables.
  • Primitive function and undefinite integral. Basic methods of integration. Definite one-dimensional and multidimensional integral.
  • Methods for solution of definite integrals (Newton-Leibnitz formula, Fubini theorem).
  • Indefinite number series. Convergence of series. Sequences and series of functions. Taylor theorem. Power series.

Work placements

Not applicable.

Aims

The main goal of the calculus course is to explain the basic principles and methods of higher mathematics that are necessary for the study of computer science. The practical aspects of applications of these methods and their use in solving concrete problems (including the application of contemporary mathematical software in the laboratories) are emphasized.

Specification of controlled education, way of implementation and compensation for absences

Practice tasks: 10 points.
Homeworks: 30 points.
Semestral examination: 60 points.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

  • Edwards, C.H., Penney, D.E., Calculus with Analytic Geometry, Prentice Hall, 1993.
  • Fong, Y., Wang, Y., Calculus, Springer, 2000.
  • Ross, K.A., Elementary analysis: The Theory of Calculus, Springer, 2000.
  • Small, D.B., Hosack, J.M., Calculus (An Integrated Approach), Mc Graw-Hill Publ. Comp., 1990.
  • Thomas, G.B., Finney, R.L., Calculus and Analytic Geometry, Addison-Wesley Publ. Comp., 1994.
  • Zill, D.G., A First Course in Differential Equations, PWS-Kent Publ. Comp., 1992.

Recommended reading

  • Brabec, B., Hrůza, B., Matematická analýza II, SNTL, Praha, 1986.
  • Švarc, S., kol., Matematická analýza I, PC DIR, Brno, 1997.
  • Krupková, V. Matematická analýza pro FIT, elektronický učební text, 2007.

Classification of course in study plans

  • Programme IT-BC-3 Bachelor's

    branch BIT , 1. year of study, summer semester, compulsory

Type of course unit

 

Lecture

39 hours, optionally

Teacher / Lecturer

Syllabus

  1. Function of one variable, limit, continuity.
  2. Differential calculus of functions of one variable I: derivative, differential, Taylor theorem.
  3. Differential calculus of functions of one variable II: maximum, minimum, behaviour of the function.
  4. Integral calculus of functions of one variable I: indefinite integral, basic methods of integration.
  5. Integral calculus of functions of one variable II: definite Riemann integral and its application.
  6. Infinite number and power series.
  7. Taylor series.
  8. Functions of two and three variables, geometry and mappings in three-dimensional space.
  9. Differential calculus of functions of more variables I: directional and partial derivatives, Taylor theorem.
  10. Differential calculus of functions of more variables II: funcional extrema, absolute and bound extrema.
  11. Integral calculus of functions of more variables I: two and three-dimensional integrals.
  12. Integral calculus of functions of more variables II: method of substitution in two and three-dimensional integrals.

Fundamentals seminar

10 hours, compulsory

Teacher / Lecturer

Syllabus

The class work is prepared in accordance with the lecture.

Exercise in computer lab

10 hours, optionally

Teacher / Lecturer

Syllabus

Trained tasks are prepared to follow and complete study matter from lectures and seminar practice.

Project

6 hours, optionally

Teacher / Lecturer