Course detail
Measurement and Experiment
FSI-ZEMAcad. year: 2017/2018
The course familiarizes students with procedures and principles of technical experiment in work of a mechanical engineer. It defines the basics of the modern methods applied for measuring of mechanical quantities, and explains the structure of the measuring and control chain. The course deals with the analysis of the analog and digital signals in time and frequency domain too. A part of the course is also dedicated to the measurement of kinematic quantities, forces, torques, pressure and noise. The course is divided into the following blocks: acoustic measurements in engineering, fundamentals of experimental modal analysis, monitoring of a machine technical condition and service life tests of mechanical units.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Examination: course is finished by the final test during 5th week. In the test, the student has to prove knowledge of basic terms, important principles and their application.
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
TŮMA, Jiří, 1997. Zpracování signálů získaných z mechanických systémů užitím FFT. Praha: Sdělovací technika. ISBN 80-901-9361-7. (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
• Process of the technical problem solution.
• Technical experiment as a source of knowledge.
• Fundamentals of the experiment and measurement methods.
• Measurement chain.
2. Transducers of physical quantities.
• Measurement of the physical quantities, classification of the transducers.
• Technical specifications of the transducers.
• Temperature sensors, non-contact pyrometers.
• Accelerometers and gyroscopes with iMEMS technology.
3. Digital signals and data.
• Classification of the analog and digital signals.
• Digital sampling, sampling theorem, aliasing phenomenon.
• Discrete Fourier transformation, FFT fundamentals.
• Aliasing phenomenon in the frequency domain.
4. Time-domain signal analysis.
• Mean, variance, root mean square.
• Crest factor.
• Trend analysis.
• Digital filtration, synchronous detection.
5. Frequency-domain signal analysis.
• Fourier transformation with resampling.
• Application of multispectrum.
• Order analysis, tracking.
• Cepstral analysis.
6. Sound measurement
• Free field, near field, diffusion field.
• Measured quantities, ISO acoustic weighting filters.
• Noise source identification.
• Mapping of the acoustic fields.
7. CAT/CAME systems.
• Measurement chain.
• Plug-in modules (AD, DA, DIO, Count).
• Global Positioning System.
• Methods of localization, GPS errors.
8. Fundamentals of the experimental modal analysis.
• Signal analysis, mechanical system analysis.
• Mechanical and analytical model.
• Classification of the exciters.
• Methods of the oscillation data analysis.