Course detail
Fundamentals of TV Technology
FEKT-BZTVAcad. year: 2017/2018
The course is aimed at the television technology. Content of the course is segmented into following parts: basic properties of light, basic principles of TV tranmission, picture scanning, TV screens, colour TV systems, TV transmission of sound signals, transmission of additional information - teletext, TV sets, digitizing of picture signals, DVB standard, source coding (JPEG, MPEG1, MPEG-2, MPEG-4 AVC), channel coding (RS code, convolutional coding, interleaving), used digital modulations (QPSK, QAM, OFDM), DVB TV sets, HDTV, TV satellite transmission, 3D TV technology.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- describe the basic principles of TV transmission (terrestrial, cable, satellite),
- explain the picture signal processing,
- describe the used method of source coding JPEG, MPEG-1, MPEG-2, MPEG-4 AVC standards,
- describe the used channel coding and modulation (QPSK, QAM, OFDM),
- explain principles of High Definition Television HDTV,
- explain principles of Three Dimenzional Television 3D TV.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Laboratory practices:
Each laboratory practice - max. 3 points.
Total number of 10 laboratory practices - max. 30 points.
Writing test:
3 questions from rewiev of information - each question max. 20 points - total number max. 60 points,
2 partial questions - each question max. 5 points - total number max. 10 points.
Course curriculum
2. Basic principles of TV transmission
3. Picture scanning, Television screens
4. TV information systems - Teletext
5. DVB standard, source coding of picture signals JPEG, MPEG-1
6. Source coding of picture signals MPEG-2, MPEG-4 AVC
7. Source coding of sound signals MPEG-1, MPEG-2
8. Multiplexing and channel coding, digital modulations QPSK, QAM, OFDM
9. DVB-T and DVB-T2 standards
10. DVB television sets
11. High definition television HDTV and DVB-H standards
12. Satellite TV transmission, DVB-S and DVB-S2 standards
13. 3D television, news in TV technology
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
[2] HANUS, Stanislav. Základy televizní techniky II. Skripta FEKT VUT v Brně. Brno: MJ Servis, 2009. 65 s. ISBN 978-80-214-4022-7. (CS)
[3 ]HANUS, Stanislav. Základy televizní techniky III. Skripta FEKT VUT v Brně. Brno: MJ Servis, 2010. 103 s. ISBN 978-80-214-4206-1. (CS)
Recommended reading
[5] MARAL, Gérard; BOUSQUET, Michel. Satellite Communications Systems. John Wiley & Sons, Ltd. England, 2004. ISBN 0-471-49654-5. (EN)
[6] SCHREER, Oliver; KAUFF, Peter; SIKORA Thomas. 3D Videocommunication. John Wiley & Sons, Ltd. England, 2005. ISBN 10-0-470-02271-X. (EN)
[7] BOVIK, Al. Handbook of Image & Video Processing. Elsevier Academic Press. USA 2005. ISBN 0-12-119792-1. (EN)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Basic principles of TV transmission
3. Picture scanning, Television screens
4. TV information systems - Teletext
5. DVB standard, source coding of picture signals JPEG, MPEG-1
6. Source coding of picture signals MPEG-2, MPEG-4 AVC
7. Source coding of sound signals MPEG-1, MPEG-2
8. Multiplexing and channel coding, digital modulations QPSK, QAM, OFDM
9. DVB-T and DVB-T2 standards
10. DVB television sets
11. High definition television HDTV and DVB-H standards
12. Satellite TV transmission, DVB-S and DVB-S2 standards
13. 3D television, news in TV technology
Laboratory exercise
Teacher / Lecturer
Syllabus
2. Testing of television set
3. TV signal
4. Data communication in TV set
5. Design of TV cable network
6. Video compression using 3D DCT
7. Video compression
8. Testing of DVB-T signals, 3D televison
9. Testing of DVB-S signals, HDTV
10. Transport stream MPEG-2