Course detail
Mathematics 2
FP-ma2PAcad. year: 2017/2018
Předmět je součástí teoretického základu oboru. Cílem je naučit studenty s porozuměním využívat aparátu číselných řad, Taylorovu metodu pro přibližný výpočet hodnot funkce, neurčitého a určitého integrálu funkce 1 proměnné, řešení 2 typů vybraných diferenciálních rovnic, základů teorie funkcí 2 reálných proměnných, základů logiky a teorie grafů (včetně aplikací v ekonomických disciplínách).
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
-active participation in the seminars where the attendance is compulsory,
-fulfilment of individual tasks and successful completion of written assignments,
-completion of one control test in the course of semester marked at least with “E”.
The exam has a written and an oral part with the written part being more important.
Course curriculum
2. Mocninná řada (základní vlastnosti, Taylorův polynom, zbytek a Taylorův vzorec, přibližný výpočet funkčních hodnot)
3. Neurčitý integrál (smysl, vlastnosti, podmínka existence, základní pravidla pro výpočet, integrály některých elementárních funkcí)
4. Metody integrace (metoda per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet, další aplikace, nevlastní integrál)
6. Obyčejné diferenciální rovnice (klasifikace, řešení a obecné řešení, podmínky řešitelnosti, rovnice se separovanými proměnnými , metoda separace)
7. Lineární diferenciální rovnice 1. řádu (homogenní a nehomogenní, metoda variace konstanty)
8. Funkce dvou proměnných I (definice, graf a jeho řezy, limita a spojitost, parciální derivace 1. řádu a její význam, pravidla)
9. Funkce dvou proměnných II (parciální derivace vyšších řádů a jejich záměnnost, gradient, Hessova matice)
10. Extrémy funkce dvou proměnných (lokální, absolutní a vázané extrémy extrémy)
11. Matematická logika (výroky a operace s nimi, zákony a pravidla)
12. Relace (relace mezi množinami a jejich základní typy, relace na množině)
13. Grafy (základní pojmy a klasifikace grafů, nejkratší cesta v ohodnoceném (orientovaném) grafu)
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
MEZNÍK, I. Základy matematiky pro ekonomii a management. Základy matematiky pro ekonomii a management. 2017. s. 5-443. ISBN: 978-80-214-5522-1. (CS)
Mezník,I.: Matematika II.FP VUT v Brně, Brno 2009 (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Mocninná řada (základní vlastnosti, Taylorův polynom, zbytek a Taylorův vzorec, přibližný výpočet funkčních hodnot)
3. Neurčitý integrál (smysl, vlastnosti, podmínka existence, základní pravidla pro výpočet, integrály některých elementárních funkcí)
4. Metody integrace (metoda per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (smysl, vlastnosti, pravidla pro výpočet, další aplikace, nevlastní integrál)
6. Obyčejné diferenciální rovnice (klasifikace, řešení a obecné řešení, podmínky řešitelnosti, rovnice se separovanými proměnnými , metoda separace)
7. Lineární diferenciální rovnice 1. řádu (homogenní a nehomogenní, metoda variace konstanty)
8. Funkce dvou proměnných I (definice, graf a jeho řezy, limita a spojitost, parciální derivace 1. řádu a její význam, pravidla)
9. Funkce dvou proměnných II (parciální derivace vyšších řádů a jejich záměnnost, gradient, Hessova matice)
10. Extrémy funkce dvou proměnných (lokální, absolutní a vázané extrémy extrémy)
11. Matematická logika (výroky a operace s nimi, zákony a pravidla)
12. Relace (relace mezi množinami a jejich základní typy, relace na množině)
13. Grafy (základní pojmy a klasifikace grafů, nejkratší cesta v ohodnoceném (orientovaném) grafu)
Exercise
Teacher / Lecturer
Syllabus
2. Mocninná řada (konstrukce Taylorova polynomu a odhad zbytku, Taylorův vzorec pro přibližný výpočet funkčních hodnot a integrálu)
3. Neurčitý integrál (použití vlastností a základních pravidel pro výpočet integrálů)
4. Metody integrace (použití metod per partes a substituční, integrace jednoduchých racionálních funkcí)
5. Určitý integrál (užití vlastností a základních pravidel pro výpočet, další aplikace, konvergence a příp. výpočet nevlastního integrálu)
6. Obyčejné diferenciální rovnice (obecné a partikulární řešení rovnice se separovanými proměnnými)
7. Lineární diferenciální rovnice 1. řádu (řešení homogenní a nehomogenní rovnice, metoda variace konstanty)
8. Funkce dvou proměnných I (definiční obory, grafy jednodušších funkcí 2 proměnných a jeho řezy, poruchy spojitosti, výpočty parciálních derivací 1. řádu)
9. Funkce dvou proměnných II (výpočty parciálních derivací vyšších řádů, určení gradientu a Hessovy matice funkce 2 proměnných)
10. Extrémy funkce dvou proměnných (výpočet stacionárních bodů a určení jejich charakteru – lokální extrém, určení absolutní ch a vázaných extrémů – Lagrangeova metoda)
11. Matematická logika (práce s výroky a operace s nimi, zákony a pravidla)
12. Relace (určení vlastností relací mezi množinami a na množině)
13. Grafy (klasifikace grafů, určení nejkratší cesty v ohodnoceném (orientovaném) grafu)