Course detail
Linear Algebra
FP-VlaPAcad. year: 2017/2018
The course deals with the following topics:
Sets: mappings of sets, relations on a set.
Algebraic operations: groupoids, vector spaces, matrices and operations on matrices.
Fundamentals of linear algebra: determinants, matrices in step form and rank of a matrix, systems of linear equations.
Euclidean spaces: scalar product of vectors, eigenvalues and eigenvectors.
Fundamentals of analytic geometry: linear concepts, conics, quadrics.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Form of examinations: The examination has a written and an oral part. In a 120-minute written test, students solve the following 5 problems:
Problem 1: Mappings, groupoids, vector spaces, Euclidean spaces, eigenvalues and eigenvectors.
Problem 2: Matrices.
Problem 3: Systems of linear equations.
Problem 4: Analytic geometry of linear concepts.
Problem 5: Analytic geometry of nonlinear concepts.
During the oral part of the examination, the examiner goes through the test with the student. The examiner
should inform the students at the last lecture about the basic rules of the examination and the evaluation
of its results.
Rules for classification: Student can achieve 4 points for each problem. Therefore, the students may achieve 20 points in total.
Final classification: A (excellent): 19 to 20 points
B (very good): 17 to 18 points
C (good): 15 to 16 points
D (satisfactory): 13 to 14 points
E (sufficient): 10 to 12 points
F (failed): 0 to 9 points
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Nicholson, W. K.: Elementary Linear Algebra with Applications, PWS... (EN)
Rektorys, K. a spol.: Přehled užité matematiky I., II., Prometheus... (CS)
Searle, S. R.: Matrix Algebra Useful for Statistics, Wiley 1982. (EN)
Thomas, G. B., Finney, R.L.: Calculus and Analytic Geometry, Addis... 2005 (EN)
Recommended reading
Horák, P., Janyška, J.: Analytická geometrie, Msarykova univerzita (CS)
Janyška, J., Sekaninová, A.: Analytická geometrie kuželoseček a kvadrik (CS)
Karásek, J., Skula, L.: Lineární algebra, Cerm 2005 (CS)
Mezník, I., Karásek, J., Miklíček, J.: Matematika I. pro strojní fakulty (CS)
Nedoma, J,: Matematika I. Cerm 2001 (CS)
Nedoma, J.: Matematika I., část první: Algebra a geometrie, PC-DIR (CS)
Procházka, L. a spol.: Algebra, Academia 1990 (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
mapping, composition of mappings.
Concept of a relation: general definition, reflexive, symmetric, antisymmetric, transitive and complete
relation, order, linear order.
Week 2: Equivalence, decomposition of a set, relationship between an equivalence and a decomposition.
Algebraic operations: groupoid, subgroupoid, semigroup, neutral element, inverse element.
Week 3: Group, subgroup.
Vector spaces: definition, linear combination, linear independence.
Week 4: Vector subspace, basis and dimension of a vector space.
Week 5: Matrices and operations on matrices.
Rings, Commutative rings, zero divisors.
Week 6: Fundamentals of linear algebra: determinants, Cauchy´s theorem, inverse matrix.
Week 7: Matrices in step form, rank of a matrix.
Week 8: Systems of linear equations: Cramer´s rule, elimination method, Frobenius´s theorem, homogeneous
systems.
Week 9: Euclidean spaces: scalar product, norm, Schwarz inequality, Gram-Schmidt orthogonalization algorithm.
Week 10: Eigenvalues and eigenvectors, characteristic polynomial.
Fundamentals of analytic geometry: cross and mixed product of vectors.
Week 11: Analytic geometry of linear concepts.
Week 12: Analytic geometry of conics.
Week 13: Analytic geometry of quadrics.
Exercise
Teacher / Lecturer
Syllabus
Following weeks: Seminar related to the topic of the lecture given in the previous week.