Course detail
Mathematics I/2
FAST-MA07Acad. year: 2016/2017
Antiderivative, indefinite integral, its properties and methods of calculation. Newton integral, its properties and calculation. Definition of Riemann integral. Applications of integral calculus in geometry and physics - area of a plane figure, length of a curve, volume and surface of a rotational body, static moments and the centre of gravity.
Functions in two and more variables. Limit and continuity, partial derivatives, implicit function, total differential, Taylor expansion, local minima and maxima, relative maxima and minima, maximum and minimum values of a function; directional derivative, gradient. Tangent to a 3-D curve, Tangent plane and normal to a surface.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Integrating rational functions, formulas needed to integrate trigonometric functions. Integrating trigonometric functions.
3. Integrating trigonometric functions. Integrating irrational functions. Newton and Riemann integral and their properties.
4. Integrating irrational functions. Newton and Riemann integral and their properties.
5. Integration methods for definite integrals. Geometric applications of the definite integral.
6. Engineering applications of the definite integral.
7. Real function of several variables. Basic notions, composite function. Limits of sequences, limit and continuity of two-functions.
8. Partial derivative, partial derivative of a composite function, higher-order partial derivatives. Total differential of a function, higher-order total differentials.
9. Taylor polynomial of a function of two variables. Local maxima and minima of functions of two variables.
10. Function in one variable defined implicitly. Function of two variables defined implicitly.
11. Some theorems of continuous functions, relative and global maxima and minima.
12. Tangent to a 3-D curve, Tangent plane and normal to a surface.
13. Scalar field, directional derivative, gradient.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
LARSON, R.- HOSTETLER, R.P.- EDWARDS, B.H.: Calculus (with Analytic Geometry). Brooks Cole, 2005. (EN)
Recommended reading
DANĚČEK, J.- DLOUHÝ, O.- PŘIBYL, O.: Neurčitý integrál. CERM Brno, 2007. (CS)
DANĚČEK, J. a kol.: Sbírka příkladů z matematiky I. CERM Brno, 2006. (CS)
DANĚČEK, J.- DLOUHÝ, O.- PŘIBYL, O.: Určitý integrál. CERM Brno, 2007. (CS)
Kolektiv: Elektronické studijní opory předmětu BA07. FAST VUT, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)
SLABĚŇÁKOVÁ, J. a kolektiv: Sbírka příkladů z matematiky II. CERM Brno, 2008. (CS)
TRYHUK,V.- DLOUHÝ, O.: Matematika I, Diferenciální počet funkce více reálných proměnných. CERM, s.r.o. Brno, 2004. (CS)
Classification of course in study plans