Course detail
Methods of Structure Analysis
FSI-WA1Acad. year: 2016/2017
Optical microscopy(methods,principles,applications),image analysis. Interaction between electrons and samples.. Transmission electron microscopy(TEM,STEM) electron diffraction. Basic principles of HV TEM and HR TEM. Scanning electron microscopy. Environmental SEM. Microanalysis in electron microscopy (X-Ray microanalysis, Auger analysis, Electron energy-loss spectrometry). X-Ray diffractometry.Selected spectroscopic methods. Scanning probe microscopy.Micr- and nanotomography. Raman spectroscopy.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2.Electron microscopy (electron - sample interaction, basic concepts and ideas, emitors of electrons)
3.Transmission electron microscopy (TEM,STEM)
4. Electron diffraction, dark field, principles of HV TEM and HR TEM
5.Scanning electron microscopy-SEM,low-voltage and environmental SEM, Focusd Ion beam (FIB) microscopy,dual.beam microscopy (FIB/SEM)
6.Local chemical analysis in TEM and SEM (introduction to energy dispersive and wave dispersive spctrometres,EDS detectors), EBSD analysis
7. WDS detectors, Electron Energy Loss Spectroscopy (EELS),Auger
8.Spectroscopy (OES-Optical emission spectroscopy, GDOSES,ICP- OES)
9.Spectroscopy (X-Ray spectroscopy, other type-surface analyzer, combustion etc.)
10.Scanning Probe Microscopy (SPM)
11.Micro- and nanotomography
12.X-Ray diffraction
13.Application of analytical methods in scince,research and for industry