Course detail
Theory of AD and DA Signal Conversion
FEKT-LTVPAcad. year: 2016/2017
Structure of a chain of blocks for analogue signal processing a nd reconstruction of digitized signal, applied codes. Programmable amplifiers, analogue multiplexers, input filters. SH and TH circuits. Parameters and types of DACs, chip structures, application notes. Parameters and types of ADCs, chip structures, application notes. Self calibration, testability. Vf and fV converters, Df converters, digital measurement of time intervals, phase, frequency.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- define the basic blocks signal processing chain of ADC and DAC,
- define and explain the basic parameters of AD and DA converters,
- describe the static transfer characteristic of AD and DA converters and mark some static parameters in it,
- describe the basic blocks of AD and DA converters (S/H, T/H stages, filters, reference, etc.), as well as design of those stages,
- describe and explain the function of the various structures of AD and DA converters, as well as on the basis of given parameters to select and design the most appropriate structure for the application.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
- a maximum of 60 points for the written final exam.
Course curriculum
1 Basic information about ADC and DAC
2 Signal preprocessing
3 Filters
4 Sampling circuits
5 Reference sources
6 DAC
7 ADC
8 Sigma-delta converters
9 Another types of converters
10 Testing
11 New trends
Excercises
1. Filters, sampling, aliasing
2. DAC with PWM
3. DAC with resistor network R-2R
4,5. Sigma delta ADC
6. Properties of ADC and DAC
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Sample/hold and trach/hold amplifiers, parameters, application notes.
Fundamental static and dynamic parameters of AD and DA conversion, precision, resolution.
Reference voltage and current sources. Numerical code bases applied in AD and DA theory.
Digital-to-analolgue converters (DAC). Fundamental structure. Paralel DACs using weighed currents, DACS exhibiting monotonicity.
Integrated DACs, indirect DACs, seriál DACs, DACs exploiting selfcalibrating, over-sampled and noise-shaping DACs, solution on chip, DACs application.
Analogue-to-digital converters (ADC). Fundamental structure, one- and multistage flash ADCs, approximation ADCs, integration converters.
Sigma-delta ADCs, SC ADCs, other ADC types. Self-calibrating and self-zeroing in ADCs.
Voltage-to-frequency converters (Vf), charge-balancing converters, dynamic parameters improvement, phase noise rejection, precision.
Frequency-to-voltage converters (Vf), converters exploiting counters and DACs, integrating converters, accuracy. Analog interface of data acquisition systems, communication between ADCs, DACs and microprocessors, plug-in I/O units of PC computers.
Interference rejection of spurious sources in ADC and DAC interfaces. Gigital correction improving final ADC and DAC precision.
Design and application rules for DAC and ADC. Testing od converters.
New trends in ADCs and DACs..
Fundamentals seminar
Teacher / Lecturer
Syllabus
DAC with PWM
DAC with resistor network R-2R
Sigma delta ADC
Properties of ADC and DAC
Laboratory exercise
Teacher / Lecturer
Syllabus
DAC with PWM
DAC with resistor network R-2R
Sigma delta ADC
Properties of ADC and DAC