Course detail
Optimization of Processes and Projects
FSI-VPPAcad. year: 2015/2016
The course deals with the following topics: The basis of mathematical process theory. Optimal regulation. The principle of Bellman as a tool for optimization of multistage processes with a general non-linear criterion function. Optimum decision policy. Dynamic programming as a tool for creation of methods for a solution of the deterministic and stochastic decision optimization problems in discrete as well as continuous range and its computation aspects. Pontryagin maximum principle. Fuzzy regulation. Applications in practical problems solution in economical decisions and in technological process control. Optimization in project management in the stages of multicriteria projects selection into portfolio in case of a restricted resource, of resource scheduling in deterministic, stochastic and fuzzy case, of cost analysis of projects and monitoring the deviations between real and scheduled projects course.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Brucker, P.: Scheduling Algorithms. Springer-Verlag, Berlin, 2010.
Puterman, M. L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-Interscience, New Jersey, 2005.
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Optimization of continuous decision process. Pontryagin's maximum principle.
3. Deterministic application of dynamic programming.
4. An example of the optimal fuzzy regulation and fuzzy control of technological processes.
5. Stochastic applications of dynamic programming.
6. Increasing of reliability of technological devices.
7. Basic notions of network analysis methods, CPM method.
8. Calculation by stochastic evaluation of activities (method PERT). A comparison of the results obtained by the method PERT with the results of the simulation methods.
9. Cost analysis of a project including application of fuzzy linear programming to the solution of two-criterion time-cost problem. Heuristic methods for scheduling with resources constraints.
10. Multicriterial projects selection. Synergistic effects and hierarchical dependencies of projects.
11. Monitoring of deviations between scheduled state and real state of project. System SSD-graph.
12. Balancing of manufacturing production belt and assembly line.
13. Scheduling of production processes.
Computer-assisted exercise
Teacher / Lecturer
Syllabus
2. Examples applications of genetic algorithms and simulated annealing.
3. Examples of optimizing discrete deterministic processes.
4. Examples of continuous processes optimizing from the area of regulation and control.
5. Examples of process optimization by means of step-by-step approximations methods.
6. Dynamic programming of stochastic processes. Example of warehouse optimization.
7. Example of optimal mining planning. Example of optimizing reliability of series-connected system.
8. Practical examples of graphs and networks. Applications of the CPM method.
9. Numerical applications of the PERT method.
10. Example of the project scheduling by fuzzy linear programming. Examples of heuristic scheduling in case of constrained resources.
11. Application of the system for projects selection into the portfolio.
12. Using the 'SSD graf' system and 'GanttProject' project management tool.
13. Numerical examples of the balancing of manufacture production belt and assembly line.