Course detail
Descriptive geometry
FAST-AA02Acad. year: 2014/2015
Orthogonal axonometry, skew axonometry, skew projection. Linear perspective, photogrammetry. Helix, developable helicoidal surface, right closed rule helicoidal surface. Surfaces of revolution . Warped surfaces. Lighting. Teoretical designs of roofs. Introduction to topopgraphic surfaces.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Information is conveyed in the form of lectures and practiced in seminars. Consultation periods are available to students. Assigned work is part of the study activities of the students.
Assesment methods and criteria linked to learning outcomes
Followed by an exam with a pass rate of at least 50%.
Course curriculum
2. Rotation symmetric surfaces, sections of rotation-symmetric surfaces.
3. Lighting of surfaces of revolution .
4. Axonometry – basics.
5. Orthogonal axonometry.
6. Skew axonometry, skew projection.
7. Linear perspective.
8. Linear perspective.
9. Basics of photogrammetry. Reconstruction from a vertical picture.
10. Warped quadrics. Hyperbolic paraboloid. One-sheet hyperboloid.
11. Higher order warped surfaces.Theoretical designe of roofs.
12. Helix, developable helicoidal surface, helicoidal conoid.
13. Topografic surfaces.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Piska, R., Medek, V.: Deskriptivní geometrie I.. SNTL Praha, Alfa Bratislava, 1975. (CS)
Piska, R., Medek, V.: Deskriptivní geometrie II.. SNTL Praha, Alfa Bratislava, 1975. (CS)
Recommended reading
Puchýřová, J., Bulantová, J., Prudilová,K., Zrůstová,L.: Úlohy o přímkových plochách (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Puchýřová, J., Bulantová, J., Prudilová,K., Zrůstová,L.: Úlohy v kosoúhlém promítání (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Šafařík, J.: Technické osvětlení (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Šafářová, H.: Teoretické řešení střech (ke stažení na webové stánce Ústavu matematiky FAST VUT v Brně). 2006. (CS)
Vala, J.: Deskriptivní geometrie I., II.. VUT Brno, 1997. (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Rotation symmetric surfaces, sections of rotation-symmetric surfaces.
3. Lighting of surfaces of revolution .
4. Axonometry – basics.
5. Orthogonal axonometry.
6. Skew axonometry, skew projection.
7. Linear perspective.
8. Linear perspective.
9. Basics of photogrammetry. Reconstruction from a vertical picture.
10. Warped quadrics. Hyperbolic paraboloid. One-sheet hyperboloid.
11. Higher order warped surfaces.Theoretical designe of roofs.
12. Helix, developable helicoidal surface, helicoidal conoid.
13. Topografic surfaces.
Exercise
Teacher / Lecturer
Syllabus
2. Projections of a simple bodies and surfaces, their sections and intersections with a straight line. Technical lighting.
3. Tangent plane of a surface of revolution, section of a surface of revolution.
4. Lighting a surface of revolution.
5. Orthogonal axonometry. Metric problems in coordinate planes.
6. Orthogonal axonometry. Projections of simple bodies and surfaces, their sections and intersections with a straight line.
7. Projecting in skew projection. Projection of a circle in a coordinate plane. Displaying simple bodies. Cutting method.
8. Linear perspective. Intersection method. Constructing a free perspective.
9. Linear perspective. Method of rotated ground plan. Other methods of projecting a perspective.
10. Linear perspective. Vertical picture. Reconstructing an object from a perpendicular picture.
11. Warped hyperboloid, construction. Hyperbolic paraboloid. Hyperbolic paraboloid given by skew tetragon. Roofing by hyperbolic paraboloid.
12. Higher-order warped surfaces. Theoretic design of roofs.
13. Constructing a helix. Right helicoidal conoid. Credits.