Course detail
Prestressed concrete
FAST-BL11Acad. year: 2014/2015
Principle of prestressing. Basic concept of pretensioning and post-tensioning. Material properties, manufacturing, types.
Pretensioning operations, technology. Post-tensioning operations, technology, prestressing systems.
Losses of prestressing of pretensioned and post-tensioned concrete, tendon profiles.
Equivalent load method, statically determinate and indeterminate structures, examples. Response of structures subjected to prestressing, simplifications, decompression state.
Resistance of prestressed members against cracks. Tensile stresses in the concrete after cracking. Control of crack width and deflection of prestressed members.
Ultimate limit state of prestressed members, full stress-strain response, shear resistance.
Language of instruction
Number of ECTS credits
Mode of study
Department
Learning outcomes of the course unit
Understanding of the behaviour of prestressed concrete structures.
Knowledge of calculation of effect of prestressing on statically determinate structures and statically indeterminate structures.
Knowledge of production technology both of pre-prestressed and post-tensioned members.
Analysing and designing prestressed concrete structural members.
Analysing and designing prestressed concrete load-bearing systems including their realisation and structural solution.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Material properties of prestressing tendons and bars, manufacturing, mechanical properties, types. Prestressing technology, basic terminology. Pretensioned concrete.
3. Post-tensioning operations, technology, prestressing systems.
4. Losses of prestressing. Frictional loss, anchorage set loss.
5. Losses of prestressing due to elastic concrete deformation, relaxation of prestressing reinforcement, creep and shrinkage. Construction and serviceability stages.
6. Effects of prestressing. Equivalent load method, statically determinate and indeterminate structures, concordant tendon, linear transformation of tendon.
7. Design of prestressing - load balanced method. Allowable stresses, allowable zone of prestressed tendon, and line of pressure. Crack resistance.
8. Structural analysis of step-by-step built structures, non-homogeneity of structures. Creep analysis – analytic solution.
9. Ultimate limit state (ULS) of prestressed members loaded by axial force and bending moment, decompression state, initial state of stress. Secondary effects of prestressing at ULS of the structures.
10. Prestressed members loaded in shear and torsion, stress analysis, proportioning.
11. Anchorage zone analysis, calculation model, check of resistance, proportioning.
12. Serviceability limit states (SLS). Crack resistance, tensile stresses in the concrete after cracking.
13. Control of crack width of prestressed members. Control of deflection.
Work placements
Aims
Design of prestressed concrete structural members and structural systems, analysis and detailing.
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
LIN, T. Y. a BURNS, Ned. H.: Design of Prestressed Concrete Structures. New York: John Wiley & Sons, 1981. ISBN 0471018988. (EN)
NAVRÁTIL, Jaroslav: Prestressed Concrete Structures. Brno: CERM, 2006. ISBN 80-7204-462-1. (EN)
ROMBACH, Günter: Spannbetonbau. Berlin: Ernst und Sohn, 2010. ISBN 978-3-433-02911-4. (DE)
Recommended reading
KLUSÁČEK, Ladislav, PANÁČEK, Josef a ŠTĚPÁNEK, Petr: Betonové konstrukce. Předpjatý beton podle ČSN 73 1201. Brno: VUT, 1991. ISBN 80-214-0267-9. (CS)
NAVRÁTIL, Jaroslav a ZICH, Miloš.: Předpjatý beton (průvodce předmětem v elektronické podobě). Brno: VUT, 2006. (CS)
NAVRÁTIL, Jaroslav: Předpjaté betonové konstrukce. Brno: CERM, 2008. ISBN 978-80-7204-561-7. (CS)
VÁCHA, Jaroslav: Předpjatý beton pro mostní stavby. Brno: VUT, 1984. (CS)
VOVES, Bohumír: Navrhování konstrukcí z předpjatého betonu v příkladech. Praha: SNTL, 1980. (CS)
ZŮDA, Karel: Výpočet staticky neurčitých mostních konstrukcí z předpjatého betonu. Praha: SNTL, 1971. (CS)
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Material properties of prestressing tendons and bars, manufacturing, mechanical properties, types. Prestressing technology, basic terminology. Pretensioned concrete.
3. Post-tensioning operations, technology, prestressing systems.
4. Losses of prestressing. Frictional loss, anchorage set loss.
5. Losses of prestressing due to elastic concrete deformation, relaxation of prestressing reinforcement, creep and shrinkage. Construction and serviceability stages.
6. Effects of prestressing. Equivalent load method, statically determinate and indeterminate structures, concordant tendon, linear transformation of tendon.
7. Design of prestressing - load balanced method. Allowable stresses, allowable zone of prestressed tendon, and line of pressure. Crack resistance.
8. Structural analysis of step-by-step built structures, non-homogeneity of structures. Creep analysis – analytic solution.
9. Ultimate limit state (ULS) of prestressed members loaded by axial force and bending moment, decompression state, initial state of stress. Secondary effects of prestressing at ULS of the structures.
10. Prestressed members loaded in shear and torsion, stress analysis, proportioning.
11. Anchorage zone analysis, calculation model, check of resistance, proportioning.
12. Serviceability limit states (SLS). Crack resistance, tensile stresses in the concrete after cracking.
13. Control of crack width of prestressed members. Control of deflection.
Exercise
Teacher / Lecturer
Syllabus
2. Verification of prestressing force design via loads effects compensation method, design of cables and their trajectory.
3. Effects of prestressing on the structures - examples.¨
4. Post-tensioned bridge beam - design (continuation): Effects of load, initial (anchoring) stress, immediate changes of prestressing.
5. Simplified calculation of time-dependent changes of prestressing. Time behaviour of prestressing force magnitude.
6. Correction.
7. Serviceability limit states – limit state of stress and cracks limitation (decompression).
8. Ultimate limit state – bending moment.
9. Ultimate limit state - shear, design of shearing reinforcement.
10. Verification of anchors, design of reinforcement in the anchoring area, drawing of active and passive reinforcement.
11. Serviceability limit states – deflection of a beam. Correction.
12. Effects of prestressing on the structures (continution): Effect of prestressing on the structures progressively erected - examples.
13. Design submission. Credit.