Course detail
Modern communication technique
FEKT-MPKTAcad. year: 2014/2015
The course is focused on these topics: Widening of the understanding of well-known network models, TCP/IP in particular. Network and transport layer, address translation. IPv6. Redundancy protocols. Autonomous systems, BGP protocol, peering, multihoming. Communication between applications, distributed systems. Introduction to parallel data processing and systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
- demonstrate the differences between ISO/OSI and TCP/IP network models, explain the essence of these models,
- analyze the task of network layer with IP protocol,
- identify and interpret several levels of address translation used in IP networks,
- explain the principle of protocols used for redundancy of access to default gateway,
- explain the essence of multicast data transfer,
- explain every aspect of IPv6 protocol and related issues,
- assess the suitability of transport layer protocols for particular applications,
- explain issues of autonomous systems existence,
- apply multi-level routing with BGP protocol,
- describe the fundamental types of distributed systems and the essence of middleware layer,
- describe and explain the general design of systems and protocols,
- explain issues of communication and synchronization among processes,
- design and analyze own communication protocol.
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Up to 70 points are awarded for the written examination.
Course curriculum
2. Task of network layer with IP protocol.
3. Address Translation in IP networks (ARP, DHCP).
4. Address Translation in IP networks (NAT, DNS).
5. Protocols for redundant access to default gateway.
6. Multicast data transfer.
7. IPv6 protocol suite (features, deployment, datagram, addresses).
8. IPv6 protocol suite (ICMPv6 responsibilities, DHCPv6, mobility, multicast, routing).
9. Autonomous systems, BGP protocol, multihoming, peering.
10. Distributed systems.
11. Processes and systems (design, description, parallel problems).
12. Processes and systems (synchronization, communication, data exchange, design of protocol).
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Multicast.
Internet Protocol version 6.
Redundancy protocols.
Autonomous systems, BGP protocol, multihoming, peering.
Communication between applications, distributed systems.
Processes and systems - design, characterization, parallel data processing, synchronization.
Laboratory exercise
Teacher / Lecturer
Syllabus
Ns2 simulation model: Basic simulation models.
Ns2 simulation model: Enhanced animations, communication analysis, Xgraph, tracking files.
Ns2 simulation model: Random numbers generator for real time traffic simulations, traffic generators.
Ns2 simulation model: IP networks with unicast routing.
Ns2 simulation model: Multicast in IP networks. Publication of the assignement of Individual project.
Ns2 simulation model: Unicast and multicast data propagation.
Ns2 simulation model: HTTP.
Ns2 simulation model: QoS, DiffServ.
Work on individual project.
Submitting and evaluation of the disposed tasks.