Course detail
Stochastic Processes
FIT-SSPAcad. year: 2013/2014
The course provides the introduction to the theory of stochastic processes. The following topics are dealt with: Types and basic characteristics, covariation function, spectral density, stationarity, examples of typical processes, time series and evaluating, parametric and nonparametric methods, identification of periodical components, ARMA processes. Applications of methods for elaboration of project time series evaluation and prediction supported by the computational system MATLAB.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
- Syllabus of lectures:
- Stochastic processes, trajectories, examples, classification of stochastic processes.
- Consistent system of distribution functions, strict and weak stationarity.
- Momentum characteristics: the mean value, autocorrelation and partial autocorrelation, spectral density.
- Poisson processes.
- Statistical analysis of Poisson processes.
- Markov processes.
- Birth and death processes.
- Markov strings, transition probabilities, properties.
- Homogeneous Markov strings, state classification and stationary probabilities.
- Time series, stationarity, ergodicity.
- Trend estimation and methods of prediction.
- AR and MA processes.
- ARMA processes.
- Statistical software Statistica, Statgraphics, Matlab.
- Reading and visualizing data. Simulation.
- Descriptional statistics of time series.
- Momentum characteristics of stochastic processes.
- Selected properties of Poisson processes: practical usage.
- Real-life examples of Poisson processes, applications in the theory of reliability, defect analyzis.
- Markov processes: examples, models of queues, looking for limit state probabilities.
- Yule's birth processes: computing state probabilities, examples of applications on processes of growth and death.
- Markov strings: practical examples, construction of matrices of transition probabilities, computation of state probabilities for homogeneous strings.
- Practical examples of state classification, computation of stationary probabilities.
- Analysis of time series, trend estimation.
- Computing autocorrelation and partial autocorrelation functions, AR(1) and MA(1) processes.
- Model identification, computing predictions using up-to-date software.
Syllabus of computer exercises:
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Recommended reading
Classification of course in study plans
- Programme IT-MSC-2 Master's
branch MBS , 0 year of study, winter semester, elective
branch MMI , 0 year of study, winter semester, elective
branch MMM , 0 year of study, winter semester, compulsory-optional
branch MPV , 0 year of study, winter semester, elective
branch MBI , 0 year of study, winter semester, elective
branch MSK , 0 year of study, winter semester, elective
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
- Stochastický proces, trajektorie, příklady, klasifikace stochastických procesů.
- Konzistentní systém distribučních funkcí, striktní a slabá stacionarita.
- Momentové charakteristiky: střední hodnota, autokorelační a parciální autokorelační funkce, spektrální hustota.
- Poissonův proces.
- Statistická analýza Poissonova procesu.
- Markovské procesy.
- Procesy zrodu a zániku.
- Markovské řetězce, pravděpodobnosti přechodů, vlastnosti.
- Homogenní Markovovy řetězce, klasifikace stavů a stacionární pravděpodobnosti.
- Časové řady, stacionarita, ergodicita.
- Odhady trendu a metody predikce.
- AR a MA procesy.
- ARMA procesy.
Exercise in computer lab
Teacher / Lecturer
Syllabus
- Statistický software Statistica, Statgraphics, Matlab.
- Načítání a vizualizace dat. Simulace.
- Popisná statistika časové řady.
- Momentové charakteristiky stochastického procesu.
- Vybrané vlastností Poissonova procesu - praktické užití.
- Reálné úlohy na Poissonův proces, aplikace v teorii spolehlivosti, analýza poruchovosti.
- Markovský proces - příklady, modely hromadné obsluhy, hledání limitních pravděpodobností stavů.
- Yuleův proces růstu - výpočet pravděpodobností stavů, úlohy na aplikace procesu růstu a zániku
- Markovské řetězce - praktické příklady, sestavení matice pravděpodobností přechodu, výpočet pravděpodobností stavů pro homogenní řetězec.
- Praktické určení klasifikace stavů, výpočet stacionárních pravděpodobností.
- Metoda klouzavých součtů pro časovou řadu, exponenciální vyrovnávání, odhady trendu.
- Výpočet autokorelační funkce a parciální autokorelační, proces AR(1) a MA(1).
- Identifikace modelu, výpočet predikce s využitím výpočetního software.