Course detail
System Simulation
FSI-FSIAcad. year: 2013/2014
Modeling and Simulation is a discipline for developing a level of understanding of the interaction of the parts of a system, and of the system as a whole. The course is focused to continues, discrete and hybrid simulation. Modeling and Simulating by means of finite automata, cellular automata and Petri nets. Modeling and simulating complex reactive systems. Random Number Generation and Monte Carlo Methods. Design of simulation experiments, HIL simulation, visualization and verification.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Ross S.: Simulation, 3rd edition, Academic Press, 2002
Zeigler B., Praehofer H., Kim T.: Theory of Modelling and Simulation, 2nd edition, Academic Press, 2000
Recommended reading
Zeigler B., Praehofer H., Kim T.: Theory of Modelling and Simulation, 2nd edition, Academic Press, 2000
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
P2: Basics of system theory. Classification of models.
P3: Formal systems.
P4: Petri's nets and finite automaton. Modeling of parallel processes.
P5: Cellular automatons and their use for simulation.
P6: Agent based modeling.
P7: Modeling and simulation of continuous systems I (description, types and solution).
P8: Modeling and simulation of continuous systems II (ODE solvers, error and stability).
P9: Modeling and simulation of continuous and discrete systems.
P10: Modeling and simulation of event driven systems.
P11: Modeling and simulation of stochastic systems. Method Monte Carlo.
P12: Fuzzy models.
P13: Modern trends in simulation (HIL simulation, dSpace tools for simulations in automobiles and aeronautics).
Computer-assisted exercise
Teacher / Lecturer
Syllabus
The labs are divided into nine parts (modeling and simulation):
a) Mechanical systems
b) Electromechanical systems
c) Logical and electronic systems
d) Fluid systems
e) Stochastic systems (pseudorandom number generators)
f) Cellular automata. Agent based systems.
g) Event driven systems.
h) Petri nets.
i) Fuzzy models.