Course detail
Computer systems for industrial control
FEKT-MPORAcad. year: 2012/2013
Basic terms: programming model, addressing modes, assembler, embedded peripherals, counters, timers, interrupt subsystem. Mapping and addressing of peripherals.
Peripherals: A/D and D/A converters, counters and timers, synchronous and asynchronous serial interface. Power elements. Intelligent display. Connection of external peripherals like memory, A/D and D/A converters, displays, keyboards. Buses I2C, 485 and 422. Programming techniques for embedded systems.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Peripherals: A/D and D/A converters, counters and timers, synchronous and asynchronous serial interface. Power elements. Intelligent display. Connection of external peripherals like memory, A/D and D/A converters, displays, keyboards. Buses I2C, 485 and 422. Programming techniques for embedded systems.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Predko M.,: Handbook of microcontrolers, McGraw-Hill, ISBN 0079137164, 1998 (EN)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
Embedded peripherals: counters/timers, asynchronous serial interface, Watch-Dog, power monitor.
Connection of external memories and mapping of peripheral. Extension of I/O, relay and transistor outputs.
Principles of peripherals connections. Intelligent display, its programming, register and modes description.
Multiplex control of displays. Devices for control of displays. Keyboard: connection, control.
I2C bus, multi-master mode, peripherals I2C devices.
Peripherals devices on I2C: RTC, EEPROM, RAM and I/O expander
Interfacing of microcontroller to process. A/D and D/A converters. Inputs multiplexing. Connecting of sensors.
Power elements and their connection to control system. Switching bridges. DC power elements. PWM implementation.
Serial bus for communication. RS232, RS485, RS422 and CAN standards.
Implementation of control algorithms. Signal filtration.
Advanced embedded systems. PC104, DIMM-PC, operating systems.
Real-time systems. Multiprocessors communication.
Laboratory exercise
Teacher / Lecturer
Syllabus
Development environment. Specific attributes of C language for microcontrollers. Basic program modules. Introduction to programming.
Embedded peripherals. Time slope generation. Timers modes. Watch-Dog.
Inputs, outputs. Data memory. Variables and structures definition. Mapping and masking external peripherals.
Programming of intelligent display. Procedures redefinition.
Keyboard. Connection and programming. Periodical reading. Edge testing. Interrupt subsystem. Procedures redefinition.
I2C bus. SW implementation. RAM and EEPROM devices on I2C. Programming.
I2C bus. RTC device. Setting and utilizing of calendar.
Synchronous serial interface. SW emulation. A/D converters on SCI.
Programming and utilizing of A/D and D/A converters, multiplexing and calibration.
RTC generating. SW implementation of PWM.
Asynchronous serial interface. RS232. Interconnection of embedded systems with PC. Basic communication. XON/XOFF data flow control.
Semester project checking.