Course detail
Power Converter Technique
FEKT-LTVMAcad. year: 2012/2013
Thermal phenomena in the power electronics. Active power, its computing and measurement. Computing of the power losses in the converter. DC/DC pulse converters. DC/AC pulse converters. Analysis of the step-down converter. Pulse width modulation – PWM. Power switching transistors. Drivers for the power switching transistors. Analysis of the switch-on and switch-off phenomena in the transistor.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
2. Liquid heat-sinks, cooling of the device cases, thermal pipes. Dynamics of the thermal phenomena.
3. Active power, its computing and measurement in the power electronics. Computing of the power losses in the converter.
4. DC/DC pulse converters – the principle, overview. DC/AC pulse converters – the principle, overview.
5. Analysis of the step-down converter. Design of the output LC-filter. Pulse width modulation – PWM at the DC/DC and DC/AC converters.
6. Power switching transistors. Drivers for the power switching transistors. Analysis of the switch-on and switch-off phenomena in the transistor.
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Patočka M.: Vybrané statě z výkonové elektroniky, sv.I. (CS)
Patočka M.: Vybrané statě z výkonové elektroniky, sv.II. (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Liquid heat-sinks, cooling of the device cases, thermal pipes. Dynamics of the thermal phenomena.
3. Active power, its computing and measurement in the power electronics. Computing of the power losses in the converter.
4. DC/DC pulse converters – the principle, overview. DC/AC pulse converters – the principle, overview.
5. Analysis of the step-down converter. Design of the output LC-filter. Pulse width modulation – PWM at the DC/DC and DC/AC converters.
6. Power switching transistors. Drivers for the power switching transistors. Analysis of the switch-on and switch-off phenomena in the transistor.
Fundamentals seminar
Teacher / Lecturer
Syllabus
2. Liquid heat-sinks, cooling of the device cases, thermal pipes. Dynamics of the thermal phenomena.
3. Active power, its computing and measurement in the power electronics. Computing of the power losses in the converter.
4. DC/DC pulse converters – the principle, overview. DC/AC pulse converters – the principle, overview.
5. Analysis of the step-down converter. Design of the output LC-filter. Pulse width modulation – PWM at the DC/DC and DC/AC converters.
6. Power switching transistors. Drivers for the power switching transistors. Analysis of the switch-on and switch-off phenomena in the transistor.