Course detail
Analysis of Biological Sequences
FEKT-FABSAcad. year: 2012/2013
The subject provides statistical foundations and an overview of the core algorithms of sequence analysis. Topics covered will include background on probability, Hidden Markov Models, and multiple hypothesis testing. Sequence analysis algorithms will include alignment, optimal pairwise local alignment, pairwise global alignment and multiple alignment, gene finding and phylogenetic trees.
Language of instruction
Number of ECTS credits
Mode of study
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Rosypal, S. Nový přehled biologie. Scientia, Praha 2003. ISBN 80-7183-268-5 (CS)
Recommended reading
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Classic and modern pairwise alignment algorithms.
3. Statistical significance of alignment scores and the interpretation of alignment algorithm's output.
4. Mechanism and the use of dynamic programming.
5. Implementation of Needleman-Wunch and Smith-Waterman algorithms.
6. Multiple alignment and phylogenetic reconstruction.
7. Evolution assumed by different models and algorithms.
8. Likelihood approach to phylogenetic reconstruction.
9. Markov models and hidden Markov models (HMM) in the genomic context.
10. Essential algorithms for making inference on HMM.
11. HMMs to gene finding.
12. Other algorithms in gene-finding.
13. Identify important algorithmic/statistical advances in bioinformatics that address biologically important questions.
Exercise in computer lab
Teacher / Lecturer
Syllabus
2. Pairwise alignment algorithms.
3. Computing alignment scores and the interpretation of alignment algorithm's output.
4. Algorithms for dynamic programming.
5. Implementation of Needleman-Wunch and Smith-Waterman algorithms.
6. Multiple alignment.
7. Tracking sequence evolution.
8. Phylogenetic reconstruction.
9. Markov models in the genomic context.
10. Hidden Markov models in the genomic context.
11. HMMs to gene finding I.
12. HMMs to gene finding II.
13. Other algorithms in gene-finding.