Course detail
Theory of Hydraulic Machines
FSI-ITSAcad. year: 2011/2012
The course is intended to deepen and widen students' theoretical knowledge of fluid mechanics. The basic laws for 2D and 3D fluid flow will be explained in a broader context. Students will learn about different kinds of fluid flow such as non-vortex and vortex flow of ideal fluid and turbulent flow. They will be provided with basic information about a shear boundary layer, i.e. about how it develops and how to model it. Finally the students will be made familiar with some methods used for solving of fluid flow. These methods are: - Method of Singularities for Thin Profiles, - Vortex Element Methods, - Finite Difference Method, - Finite Volume Method.
Language of instruction
Number of ECTS credits
Mode of study
Guarantor
Department
Learning outcomes of the course unit
Prerequisites
Co-requisites
Planned learning activities and teaching methods
Assesment methods and criteria linked to learning outcomes
Course curriculum
Work placements
Aims
Specification of controlled education, way of implementation and compensation for absences
Recommended optional programme components
Prerequisites and corequisites
Basic literature
Hydraulické stroje: Hydraulické stroje, , 0
LEWIS, R.I: Vortex element methods for fluid dynamic analysis of engineering systems, , 0
NECHLEBA, M.: Vodní turbíny, , 0
Recommended reading
FLEISCHNER, P.: Vybrané statě z mechaniky tekutin, , 0
NECHLEBA, M.: Vodní turbíny I., , 0
ŠOB, F.: Hydromechanika, , 0
Classification of course in study plans
Type of course unit
Lecture
Teacher / Lecturer
Syllabus
2. Methods of continuum descriptions, basic terms of fluid mechanic, path line, stream line, vortex filament, vortex tube.
3. The fluid flow types, basic equations describing fluid flow.
4. Bernouli equation, Lagrange integral. 2D fluid flow, flow function defining, non-vortex flow, conformal projection, function of complex potential.
5. Finite difference method and its application on the 2D channel and axially symmetrical channel.
6. Non vortex fluid flow, simple flow pattern, principle of superposition. Calculation of fluid flow round a rotary cylinder.
7.-8. Method of singlularities applied to the fluid flow round the thin profiles and profile net.
9.-10. Vortex flow of ideal fluid, vortex element method, Biot-Savart law.
11. Turbulent flow, models of turbulence, basic principal of finite volume method.
12.- 13. Shear boundary layer, basic terms, solution of laminar shear boundary layer.
Exercise
Teacher / Lecturer
Syllabus